Injection overmolding of unidirectional fibers and preforms is an attractive process for many good reasons. It’s fast, consistent and repeatable, and it can be performed with a machine that is relatively easy to acquire, program and control. Injection molding’s disadvantage, however, is it requires tooling that is typically very expensive — certainly more expensive than tools for compression molding. Further, overmolding requires that the composite be encapsulated within the tool, and if it’s a larger part, that means larger tooling. Add it all up and the cost of composites overmolding can exceed its benefits.
Robert Davies, CEO of Fibrtec (Atlanta, Texas, U.S.), has developed an interesting solution to this particular overmolding dilemma. His system uses a hybrid injection/compression overmolding process of his own design to combine smaller injection molded parts or inserts within a larger compression molded part. In essence, the approach flips the script on the overmolding strategy. Rather than injection mold around a composite preform, Davies’ solution involves compression molding around an injection molded part.
“What [Fibrtec] decided to do was injection mold the bosses, features, ribs and those kinds of things, and position them in place into the same compression molding tool that the laminate was going to be consolidated in,” says Mike Favaloro, president and CEO of composites consultancy CompositeTechs LLC (Amesbury, Mass., U.S.), who spoke about the process at the Composites Overmolding conference in Novi, Mich., U.S., in 2018.
“Since you have to consolidate the laminate anyway, why not consolidate the laminate with the injection molded parts in place?” he adds.
With Fibrtec’s process, ribs, bosses and similar features are injection molded off-line using thermoplastic resins, lower cost tooling and conventional injection molding machines. The injection molded insert is then robotically placed in a compression mold with a preform.
Related Content
Corebon, Composite Braiding partner to enhance TPC manufacturing
Collaboration aims to overcome production limitations with tubular thermoplastic composites (TPC) by using induction-heated tooling and high-quality commingled braids.
Read MoreNoble Gas Systems 350-bar conformable pressure vessels pass HGV2 standard tests
Conformable tanks with new materials pass technical tests for hydrogen storage, to compete with Type IV pressure vessels using CFRP.
Read MoreCo-molding SMC with braided glass fiber demonstrates truck bed potential
Prepreg co-molding compound by IDI Composites International and A&P Technology enables new geometries and levels of strength and resiliency for automotive, mobility.
Read MoreRead Next
Overmolded hybrid parts open new composites markets
A process that combines continuous carbon fiber-reinforced PAEK with chopped fiber/PEEK overmolding is making inroads in the aerospace market. Parts that previously could not be produced cost-effectively from composites can now be made at less cost than their metal counterparts.
Read More“Structured air” TPS safeguards composite structures
Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.
Read MoreVIDEO: High-volume processing for fiberglass components
Cannon Ergos, a company specializing in high-ton presses and equipment for composites fabrication and plastics processing, displayed automotive and industrial components at CAMX 2024.
Read More