Airtech
Published

Plant Tour: Aeris Energy — Wind blade economics

Side story to Plant Tour: Aeris Energy, Caucaia, Brazil.

Share

One result of Aeris Energy’s close relationship with resin supplier Hexion Inc. (Columbus, OH, US) is that the wind blade manufacturer has embraced much of the latter’s strategic and operational thinking.  Hexion’s wind energy and composites team, led by Johannes Meunier, Hexion’s global segment leader, wind/composites, has been a steady, influential presence at Aeris almost from its start.

Meunier and his team, based out of Germany, have a long history with composite materials, composites manufacturing and the wind energy industry. Because of this, he has seen good and efficient as well as bad and inefficient composites manufacturing. In short, he has firm opinions about what it takes to maximize efficiency, quality and profitability in the wind blade manufacturing space.

Meunier notes, first, that the wind blade manufacturing industry has matured substantially in the past decade. Product quality standards have tightened, material quality has improved, manufacturing processes have been fine-tuned, blade architecture has evolved, average blade length has increased, and blade lifespan expectations also have increased — to 25 years. Unchanged, however, is the fact the blade is the bottleneck in the overall wind turbine manufacturing process. Blademakers, therefore, are under constant pressure to increase the pace of manufacture, without failing to meet quality and cost targets. Compounding this challenge is the famous Square-Cube Law, which says:

  • Wind turbine power is proportional to the square of rotor diameter, and . . .
  • Wind blade mass increases in proportion to the rotor diameter cubed.

What does this mean? Wind blade mass increases at a greater rate than wind turbine power as rotor diameter increases.

Meunier has a few simple rules for coping in this environment. First, emphasize quality and value over unit price. Or more simply, you get what you pay for.

Second, and conversely, don’t choose materials based on low unit price. Very often, Meunier says, the use of a more expensive, higher quality material (glass, resin, bonding paste) can provide long-term savings that exceed the additional cost of the material.

Third, he says, capture data. Good manufacturers value map — that is, they measure every manufacturing activity and know intimately what it costs in money, personnel and time to manufacture a blade. Among the things to measure: In-mold repairs, raw material cost and waste, resin used vs. resin disposed of, blade manufacturing time, man-hours/blade, cycle time, kitting accuracy.

Fourth, continuously improve. Use your captured data to feed a continuous effort to increase manufacturing speed and workflow without increasing personnel costs. Look for wasted time, effort, material and money, and then work to get rid of it. “The customers that see that potential are the most successful customers,” Meunier contends. “You cannot achieve such savings by pushing down on unit price. You must innovate the cost out.”

This philosophy is expressed clearly at Aeris in many ways — in how the company manages its workforce, cares for its molds, carries out production, and positions itself in the marketplace. “We do not make the least expensive blades,” admits Bruno Lolli, Aeris’ planning and process management director. “That is not how we compete. But we make quality blades, and we focus on serving the customer. We feel we are in a very good place.”

Airtech
Zone 5 CLEAVER
Coast-Line Intl
CompositesWorld
Composites product design
Carbon Fiber 2024
HEATCON Composite Systems
NewStar Adhesives - Nautical Adhesives
MITO® Material Solutions
Advert for lightweight carrier veils used in aero
Airtech
CompositesWorld

Related Content

Defense

Large-format 3D printing enables toolless, rapid production for AUVs

Dive Technologies started by 3D printing prototypes of its composite autonomous underwater vehicles, but AM became the solution for customizable, toolless production.

Read More
Aerospace

Plant tour: Albany Engineered Composites, Rochester, N.H., U.S.

Efficient, high-quality, well-controlled composites manufacturing at volume is the mantra for this 3D weaving specialist.

Read More
Fabrics/Preforms

One-piece, one-shot, 17-meter wing spar for high-rate aircraft manufacture

GKN Aerospace has spent the last five years developing materials strategies and resin transfer molding (RTM) for an aircraft trailing edge wing spar for the Airbus Wing of Tomorrow program.

Read More
RTM

Plant tour: Spirit AeroSystems, Belfast, Northern Ireland, U.K.

Purpose-built facility employs resin transfer infusion (RTI) and assembly technology to manufacture today’s composite A220 wings, and prepares for future new programs and production ramp-ups.

Read More

Read Next

Aerospace

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
Thermoplastics

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Fastening / Finishing

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Airtech International Inc.