Airtech
Published

Improving laminates through anisotropy and homogenization

Dr. Stephen Tsai, professor research emeritus in the Department of Aeronautics & Astronautics at Stanford University, discusses the merits of unbalanced (anisotropic) layers in composite laminates.

Dr. Stephen Tsai

Share

In composites design, the symmetric or balanced laminate, consisting of four fixed angles of unidirectional layers, has been the choice of designers for years because of its metal-like behavior. Unbalanced layers, for example [0°/25°], are never used but it is now known that they can offer unexpected benefits that are not possible with balanced laminates. Such a two-angle [0°/25°] building block, developed at Stanford University (pat. pend.), has been designed to increase not only strength, by suppressing matrix cracking, but also to offset deformation from shear coupling associated with anisotropic layers.

Bi-angle laminates can have ply stresses engineered to work synergistically. A [0°/25°] beam has 39 percent less deflection and more than 30 percent higher first natural frequency than four-angle quasi-isotropic laminates. Additionally, the beam has 15 percent less thickness and is only 55 percent of the weight of aluminum for the same deflection.

Structures can be built with single-axis layup with this pre-plied two-angle layer, rather than a four-axis layup for four-angle laminates. This unique single-axis option results in higher layup speed, less error in alignment, less wrinkling, and more value. Further, bi-angle layers can be mirrored [0°/±25°/0°] to form a layer capable of withstanding a fully reversible twist.

If bi-angle layers are laid up by hand, cutting the shallow 25° ply can be time consuming and result in excessive scrap. This can be avoided by using premanufactured noncrimp fabric (NCF). Stitching machines can mass produce [0°/25°] and [0°/-25°] in single layers. Additionally, the off-axis ply can be varied to match the loads. This continuous angle optimization is easier than creating discrete ply jumps in fixed angles in a laminate.

An NCF can have plies that incorporate unidirectional tapes made by a tow-spreading process, resulting in mass as low as 75 g/m2 per ply or 150 g/m2 per two-angle layer. A 2-mm/0.08-inch thick laminate, then, can have 32 plies. This bi-angle NCF has strength comparable to that of unidirectional prepreg. In addition, thin plies form stronger and tougher laminates because the layers are more finely dispersed. Minimum-gage laminates also are more easily designed with two-angle layers. This innovative thin-ply NCF has been pioneered by Chomarat (Le Cheylard, France).

The difference between symmetrical and asymmetrical laminates disappears when more than 16 bi-angle layers are stacked. Continuous stacking makes the location of, and reversing the order of stacking relative to the midplane, irrelevant. Concern about warpage during cure vanishes because the large number of repeated layers homogenizes the laminate. Also the tendency toward delamination is reduced for highly homogenized laminates.

Stiffened structures can be made with the same two-angle layer, minimizing the interlaminar stresses between, for example, a wingskin and its stringers. Ply drops can be made layer by layer and located at either the outer surfaces or in the interior. In fact, the optimum ply thickness is relative. Homogenization is approximated with 32 plies; if the required laminate thickness is 4 mm/0.16 inch, the optimum ply areal weight would be 150 g/m2. Instead of the traditional ply-by-ply model in analysis, a homogeneous anisotropic material now can be used. The

increase in speed is about n, or 32 times faster than the traditional ply-by-ply modeling.
Three different bi-angle NCF designs have been consolidated using a proprietary infusion process (pat. pend.) developed by ADVAERO Technologies Inc., Joint School of Nanoscience and Nanoengineering, VX Aerospace (Morganton, N.C.) and North Carolina A&T State University (Greensboro, N.C.); by resin film infusion and by pultrusion at KaZak Composites (Woburn, Mass.); and by prepreg, using a unique in-house epoxy by Aldila Materials (Poway, Calif.). Laminate testing under static and impact loading is under way at NASA Marshall Space Flight Center (Huntsville, Ala.), and fatigue testing is ongoing at Exova (Mississauga, Ontario, Canada). This new [0°/25°] building block for laminated structures is ready for application with unmatched quality and value. Simultaneous weight and cost reduction can finally be realized.

Those interested in receiving training in the use of bi-angle NCFs can visit http://stanford.edu/group/composites.

Eliminate Quality Escapes  With LASERVISION AI
Smart Tooling
Airtech
CompositesWorld
CAMX 2024
Airtech
Advert for lightweight carrier veils used in aero
MITO® Material Solutions
CompositesWorld
Carbon Fiber 2024
NewStar Adhesives - Nautical Adhesives
Release agents and process chemical specialties

Related Content

Epoxies

CAMX 2022 exhibit preview: Renegade Materials Corp.

Renegade Materials is promoting its high-performance prepreg, RTM resin and adhesive products for use in demanding aerospace applications.  

Read More
Thermoplastics

Trelleborg launches low-friction thermoplastic composite bearing

The HiMod Advanced Composite Bearing Plus is a dual-layer bearing with a low-friction PEEK liner that doubles as an impermeable sealing surface, in addition to 50% less sliding friction, increased wear performance.  

Read More
Out of Autoclave

From the CW Archives: Airbus A400M cargo door

The inaugural CW From the Archives revisits Sara Black’s 2007 story on out-of-autoclave infusion used to fabricate the massive composite upper cargo door for the Airbus A400M military airlifter.

Read More
Out of Autoclave

SmartValves offer improvements over traditional vacuum bag ports

Developed to resolve tilting and close-off issues, SmartValves eliminate cutting through vacuum bags while offering reduced process time and maintenance.

Read More

Read Next

Aerospace

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
Aerospace

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Defense

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Airtech International Inc.