Composites One
Published

Other fiber options

Quartz fibers, while more expensive than glass, have lower density, higher strength and higher stiffness than E-glass, and about twice the elongation-to-break, making them a good choice where durability is a priority. Quartz fibers also have a near-zero CTE; they can maintain their performance properties under

Share

Quartz fibers, while more expensive than glass, have lower density, higher strength and higher stiffness than E-glass, and about twice the elongation-to-break, making them a good choice where durability is a priority. Quartz fibers also have a near-zero CTE; they can maintain their performance properties under continuous exposure to temperatures as high as 1050°C/1920°F and up to 1250°C/2280°F for short time periods. Quartz fibers possess significantly better electromagnetic properties than glass, a plus when fabricating parts like aircraft radomes.

Ceramic fibers offer high to very high temperature resistance but low impact resistance and relatively poor room-temperature properties. Typically much more expensive than other fibers, ceramic, like quartz, is the fiber of choice when its advantages justify the extra cost. One application of ceramic fibers is for flame-resistant veil material in laminates for aircraft interiors, which must withstand 1093°C/2000°F for at least 15 minutes without flame penetration.

PBO is a relatively new fiber, with modulus and tensile strength almost double that of aramid fiber and a decomposition temperature almost 100°C/212°F higher. Suitable for high-temperature applications, it is currently used in protective ballistic armor, sporting goods, insulation and tire reinforcements.

Also a newcomer, basalt fibers are inexpensive, golden brown-colored fibers, similar to glass, and currently produced primarily in Russia and Ukraine. Basalt exhibits better chemical and alkali resistance than glass, promising an additional choice for use in reinforcing concrete in infrastructure applications. Kamenny Vek (Dubna, Russia), Technobasalt (Kyiv, Ukraine) and Hengdian Group Shanghai Russia & Gold Basalt Fibre Co. (Shanghai, China) are three of the growing number of basalt fiber and basalt fiber product distributors.

Boron fibers are five times as strong and twice as stiff as steel. They are made by a chemical vapor deposition process in which boron vapors are deposited onto a fine tungsten or carbon filament. Boron provides strength, stiffness and light weight, and possesses excellent compressive properties and buckling resistance. Uses for boron composites range from sporting goods, such as fishing rods, golf club shafts, skis and bicycle frames, to aerospace applications as varied as aircraft empennage skins, space shuttle truss members and prefabricated aircraft repair patches.

Fiber hybrids capitalize on the best properties of various fiber types, and may reduce raw material costs. Hybrid composites that combine carbon/aramid or carbon/glass fibers have been used successfully in ribbed aircraft engine thrust reversers, telescope mirrors, driveshafts for ground transportation and infrastructure column-wrapping systems.

Natural fibers - abaca, coconut, flax, hemp, jute, kenaf and sisal are the most common - are derived from the bast or outer stem of certain plants. Natural fibers are enjoying increased use because of their "green"attributes (less energy to produce), light weight, recyclability, good insulation properties and carbon dioxide neutrality (when burned natural fibers give off no more carbon dioxide than consumed while growing). Natural fibers also have the lowest density of any structural fiber but possess sufficient stiffness and strength for some applications.

The automotive industry, in particular, is using these fibers in traditionally unreinforced plastic parts and even employs them as an alternative to glass fibers. Natural fiber-reinforced thermosets and thermoplastics are most often found in door panels, package trays, seat backs and trunk liners in cars and trucks. European fabricators hold the lead in use of these materials, in part because regulations now require their automobile components to be recyclable. Natural fibers can be incorporated into molded or extruded parts and, more recently, have been used in the direct long fiber injection (D-LFT) process where kenaf, flax and natural fiber/glass hybrids are used to reinforce polypropylene.

Ad showing Janicki CNC Mill machining part in tool
Park Aerospace Corp.
Fire Retardant Epoxies
Composites One
Nanoparticles filled epoxy adhesives
Wickert Hydraulic Presses
Vacuum and Controlled Atmosphere furnaces
Alpha’s Premier ESR®
CIJECT machines and monitoring systems
Large Scale Additive Manufacturing
Keyland Polymer Webinar Coatings on Composite & AM
NewStar Adhesives - Nautical Adhesives

Related Content

Pressure Vessels

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More
Automotive

The state of recycled carbon fiber

As the need for carbon fiber rises, can recycling fill the gap?

Read More

ASCEND program update: Designing next-gen, high-rate auto and aerospace composites

GKN Aerospace, McLaren Automotive and U.K.-based partners share goals and progress aiming at high-rate, Industry 4.0-enabled, sustainable materials and processes.

Read More
Automation

Plant tour: Middle River Aerostructure Systems, Baltimore, Md., U.S.

The historic Martin Aircraft factory is advancing digitized automation for more sustainable production of composite aerostructures.

Read More

Read Next

Machining/Drilling

CFRP planing head: 50% less mass, 1.5 times faster rotation

Novel, modular design minimizes weight for high-precision cutting tools with faster production speeds.  

Read More
RTM

VIDEO: High-rate composites production for aerospace

Westlake Epoxy’s process on display at CAMX 2024 reduces cycle time from hours to just 15 minutes.

Read More
Automotive

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Composites One