Composites One
Published

Airbus experimental glider completes first flight

The composites-intensive Perlan 2 glider will, in 2016, attempt to set a new world altitude record for any airplane.

Share

Airbus Group (Toulouse, France) reported on Sept. 23 that the composites-intensive Perlan 2 glider, the world’s first engineless aircraft designed to reach the edge of space, achieved its successful first flight in a historic moment about 5,000 ft/1,524m above Robert’s Field, the Redmond Municipal Airport in Redmond, OR, US. This was the first test flight of the aircraft, which next year will attempt to set a new world altitude record for any airplane. The goal of this project is to open up a world of new discoveries related to high-altitude flight, climate change and space exploration.

The Perlan 2 glider was developed by The Perlan Project, a volunteer-run, non-profit endeavor headed by leaders in aerospace and engineering. It is supported by Airbus Group and a group of other sponsors that includes Weather Extreme Ltd., United Technologies and BRS Aerospace.

“We’re extremely excited about the successful first flight of the Perlan 2 glider,” says Ed Warnock, CEO of the Perlan Project. “This marks a major breakthrough in aviation innovation, one that will allow winged exploration of the atmosphere at the edge of space and lead to new discoveries to unravel some of the continuing mysteries of weather, climate change and ozone depletion.”

Jim Payne and Morgan Sandercock piloted the flight, which was the first of many for the Airbus Perlan Mission II team as it prepares to soar the aircraft to the edge of space in Argentina in 2016. The Perlan 2 is a pressurized sailplane designed to ride air currents that, in certain mountainous regions near the north and south poles, can reach into the stratosphere. Next year’s flights are expected to reach 90,000 ft/27,432m, exceeding even the altitudes achieved by the U-2 and the SR-71.

Despite having no engine, the glider’s true flight speed at that altitude will be more than 400 mph and the air density will be less than 2% of what it is at sea level. The crew will breathe pure oxygen provided by a rebreather system, similar to what astronauts use in space.

In addition to its two-person crew, the aircraft carries scientific instruments to provide new insight into climate change and our upper atmosphere. Because it lacks an engine, Perlan 2 can explore the edge of space without polluting the atmosphere it will study, opening up human knowledge on several fronts:

  • Understanding Weather – What happens at the highest levels of the stratosphere impacts weather around the globe, and Perlan 2 will be able to directly observe important atmospheric phenomena that previously have only been speculated about.
  • Predicting Climate Change – Perlan 2 will collect and share data with atmospheric scientists worldwide, to improve climate models and more accurately predict climate change and its potential solutions.
  • Diagnosing the Ozone Layer – Perlan 2 can take untainted air samples from the stratosphere to measure the levels of ozone-damaging chemicals and assess whether the ozone layer is replenishing or still depleting.
  • Future of Aviation – Many of the high-altitude weather phenomena Perlan 2 will encounter have implications for aircraft performance and safety, especially as commercial aviation strives to operate aircraft at higher altitudes.
  • Future of Space Travel – Perlan 2 will operate in atmospheric conditions roughly similar to those on Mars, providing insight into how wingborne aircraft could operate above the Martian surface. 

Composites fabrication for Perlan 2 was provided by Bonehead Composites (Perris, CA, US).

Vacuum and Controlled Atmosphere furnaces
Fire Retardant Epoxies
Park Aerospace Corp.
Wickert Hydraulic Presses
Composites One
Ad showing Janicki CNC Mill machining part in tool
Nanoparticles filled epoxy adhesives
Alpha’s Premier ESR®
Keyland Polymer Webinar Coatings on Composite & AM
CIJECT machines and monitoring systems
CompositesWorld
Large Scale Additive Manufacturing

Related Content

Carbon Fibers

The potential for thermoplastic composite nacelles

Collins Aerospace draws on global team, decades of experience to demonstrate large, curved AFP and welded structures for the next generation of aircraft.

Read More
Focus on Design

Next-generation airship design enabled by modern composites

LTA Research’s proof-of-concept Pathfinder 1 modernizes a fully rigid airship design with a largely carbon fiber composite frame. R&D has already begun on higher volume, more automated manufacturing for the future.

Read More
Ketones

PEEK vs. PEKK vs. PAEK and continuous compression molding

Suppliers of thermoplastics and carbon fiber chime in regarding PEEK vs. PEKK, and now PAEK, as well as in-situ consolidation — the supply chain for thermoplastic tape composites continues to evolve.

Read More

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More

Read Next

Thermoplastics

Plant tour: A&P, Cincinnati, OH

A&P has made a name for itself as a braider, but the depth and breadth of its technical aptitude comes into sharp focus with a peek behind usually closed doors.

Read More
Finishing & Fastening

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
RTM

VIDEO: High-rate composites production for aerospace

Westlake Epoxy’s process on display at CAMX 2024 reduces cycle time from hours to just 15 minutes.

Read More
Composites One