AMRC develops 3D woven composite components for fusion nuclear reactor
The University of Sheffield AMRC is developing a ceramic composite breeder blanket capable of withstanding the extreme temperatures in a nuclear reactor.
Source | AMRC
The University of Sheffield Advanced Manufacturing Research Centre (AMRC; Catcliffe, U.K.), in collaboration with the United Kingdom Atomic Energy Authority (UKAEA; Abingdon, U.K.), is developing a 3D woven composite breeder blanket component capable of withstanding extreme temperatures inside a fusion nuclear reactor, as part of an effort to accelerate delivery of limitless zero-carbon fusion energy.
The work was commissioned by the Joining and Advanced Manufacturing (JAM) program, which forms one of three Fusion Technology Facilities at UKAEA. The AMRC, part of the High Value Manufacturing (HVM) Catapult, worked with Dr. Lyndsey Mooring, technical lead for non-metallics at UKAEA, to explore how composite materials could produce components that are stiffer, lighter and easier to manufacture than those currently in use, but which retain the necessary capabilities.
The UKAEA is involved in developing a next-generation magnetic confinement reactor — called a tokamak — at its site in Culham, Oxfordshire, U.K. Research is focused on preparing for an international tokamak experiment at the International Thermonuclear Experimental Reactor (ITER) in Saint-Paul-lès-Durance in southern France, and for the subsequent machine intended to demonstrate the generation of power from fusion.
In September 2019, the UKAEA announced that it would be building a new £22 million fusion energy research facility at the Advanced Manufacturing Park in Rotherham, U.K., that includes a test facility that reproduces the thermohydraulic and electromagnetic conditions in a fusion reactor. The center will work with industrial partners to commercialize nuclear fusion as a major source of low-carbon electricity.
Fusion occurs when two types of hydrogen atoms, tritium and deuterium, collide at enormously high speeds to create helium and release a high-energy neutron. Once released, the neutron interacts with a much cooler breeder blanket to absorb the energy. The breeder blanket must capture the energy of the neutrons to generate power, but also prevent the neutrons escaping and ‘breed’ more tritium through reactions with lithium contained in the blanket. Each blanket module typically measures about 1 by 1.5 meters and currently weighs up to 4.6 metric tonnes.
Up until now, breeder blanket designs have been made of steel, but the AMRC’s research involves developing a design that uses silicon carbide composite materials formed into a 3D woven structure with additively manufactured components.
“At the moment, the designs being tested in ITER use steel for the breeder blankets structure, which have a network of double walled tubes of 8-millimeter internal diameter and 1.25-millimeter wall thickness to collect the heat. Each one is welded into place and every connection has to be inspected. That is what we were asked to replace,” says Steffan Lea, research fellow at the AMRC Composite Centre. “Currently, their steel modules are limited to approximately 500˚C, so UKAEA asked us if there was anything we could do to get it up to 600˚C. We set out to see what materials we could use, that would enable higher temperature operation.”
For the proposed composite breeder blankets, the cooling tubes would be integrated into the material, and 3D-printed parts used to define features such as connectors and manifolds.
“We wanted to maximize the available surface area for heat transfer while being as lightweight as possible, but ensure it occupied a similar volume to the existing breeder blanket designs,” says Joe Palmer, senior project manager at the AMRC’s Design and Prototyping Group. “To achieve a lightweight, temperature-resistant structure, a silicon carbide composite material was chosen for the breeder blanket, with the internal flow channels being created by forming the composite around a disposable core.”
After a computer-aided design (CAD) model was produced, Chris McHugh, dry fiber development manager at the AMRC Composite Centre, created a weave design for the composite. “The design I created had multiple weave zones and had multiple layer weaves. The structure needed holes robust enough to include tubes and needed to maintain the preform shape without distortion. What we were able to produce on the loom was a 3D woven structure with pockets for the 3D-printed tubes which could be formed into a ridged component,” McHugh says.
The next step, according to Dr. Elizabeth Surrey, head of technology at the UKAEA, is to continue silicon carbide composite development and build a demonstrator that can be tested inside a reactor test facility in order to understand how it performs and reacts to the environment.
“If nuclear fusion is going to be realized, you need a simple design for breeder blankets that are manufacturable and easily replicated. That is what we have tried to create,” Surrey says.
Related Content
Honda begins production of 2025 CR-V e:FCEV with Type 4 hydrogen tanks in U.S.
Model includes new technologies produced at Performance Manufacturing Center (PMC) in Marysville, Ohio, which is part of Honda hydrogen business strategy that includes Class 8 trucks.
Read MoreNovel dry tape for liquid molded composites
MTorres seeks to enable next-gen aircraft and open new markets for composites with low-cost, high-permeability tapes and versatile, high-speed production lines.
Read MoreMingYang reveals 18-MW offshore wind turbine model with 140-meter-long blades
The Chinese wind turbine manufacturer surpasses its 16-MW platform, optimizes wind farm construction costs for 1-GW wind farms.
Read MoreComposites end markets: Batteries and fuel cells (2024)
As the number of battery and fuel cell electric vehicles (EVs) grows, so do the opportunities for composites in battery enclosures and components for fuel cells.
Read MoreRead Next
CFRP planing head: 50% less mass, 1.5 times faster rotation
Novel, modular design minimizes weight for high-precision cutting tools with faster production speeds.
Read More“Structured air” TPS safeguards composite structures
Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.
Read MorePlant tour: A&P, Cincinnati, OH
A&P has made a name for itself as a braider, but the depth and breadth of its technical aptitude comes into sharp focus with a peek behind usually closed doors.
Read More