Ready-to-Ship Composites
Published

First DLR rotor blade headed for load testing

DLR energy researchers have manufactured the first rotor blade (Smartblade) that adapts to wind conditions using bending torsion coupling.

Share

Researchers at the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) have completed the first rotor blade as part of the SmartBlades2 project. The rotor blade with a length of 20 metres can adapt to varying wind conditions using bending torsion coupling. At the beginning of 2018, the rotor blade will be subjected to numerous load tests at the Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) in Bremerhaven. In the research project SmartBlades2, industry and research facilities are developing innovative technologies for larger and more powerful wind turbines. The project is supported by the German Federal Ministry for Economic Affairs and Energy (BMWi).

During the rotation of a large wind turbine with rotor blades 80 metres and longer, each rotor blade is intermittently positioned close to the ground and a short time later at a height of around 200 metres. Due to the uneven wind distribution between ground level and the top section of the wind turbine, rotor blades are subjected to strong fluctuations in wind load. This results in high stresses for the rotor blade material, particularly when operating at the nominal capacity of the turbine. Additionally, wind turbine operators need to restrict the wind turbines in strong winds and cannot optimally exploit the energy of the wind flow. Rotor blades with bending torsion coupling are able to independently adapt their geometry to the wind conditions. At higher wind speeds the rotor blade twists, thus exposing less contact surface to the wind, which enables the load on the installation to be reduced.

At the Center for Lightweight-Production-Technology (ZLP), located at the DLR site in Stade, scientists from the DLR Institute of Composite Structures and Adaptive Systems have produced a 20-metre-long rotor blade with structural bending torsion coupling. In doing so, the materials of the blade (glass-fiber reinforced plastic, wood and plastic foam) are placed in such a way that under wind load the blade not only bends backwards, but above all twists. "Because of the innovative structure the rotor blades are more flexible, at the same time allowing them to be lighter and less massive. Particularly for very large wind turbines, less weight is a great benefit and additionally makes transportation and assembly easier," says Zhuzhell Montano Rejas, project manager of SmartBlades2 at the DLR Institute of Composite Structures and Adaptive Systems.

From December on, the load tests will be conducted on a rotor blade test rig at the Fraunhofer IWES in Bremerhaven. Here, the load-bearing capacity of the rotor blade will be tested under extreme loads and under normal operating conditions in order to determine the blade properties and their deformation behavior. The scientists pay special attention to whether bending and torsion of the rotor blade optimally complement one another. The scientists have integrated measuring sensors inside the rotor blade for accurate data recording during the load tests. This allows them to observe structural and material deformations. Once a sufficient load-bearing capacity has been confirmed, within the coming year the scientists will produce a complete three-blade rotor with the same dimensions, which they will subject to open air wind turbine testing under realistic load and weather conditions at the US National Renewable Energy Laboratory (NREL).

Further technologies investigated in the project are adaptive trailing edge flaps and leading edge slats. Both concepts come from aviation and are comparable to the flaps on aircraft wings. In addition, researchers are working on the further development of selected methods and technologies such as the aerodynamic behaviour of rotor blades and control of the entire system.

Composites One
Harper International Carbon Fiber
BARRDAY PREPREG
Custom Quantity Composite Repair Materials
Toray Advanced Composites
Adhesives for Composite Materials
Airtech
CompositesWorld
Carbon Fiber 2024
CompositesWorld
Advert for lightweight carrier veils used in aero
Release agents and process chemical specialties

Related Content

Carbon Fibers

Novel dry tape for liquid molded composites

MTorres seeks to enable next-gen aircraft and open new markets for composites with low-cost, high-permeability tapes and versatile, high-speed production lines.

Read More
Wind/Energy

Recycling end-of-life composite parts: New methods, markets

From infrastructure solutions to consumer products, Polish recycler Anmet and Netherlands-based researchers are developing new methods for repurposing wind turbine blades and other composite parts.

Read More
Aerospace

Thermoplastic composites welding advances for more sustainable airframes

Multiple demonstrators help various welding technologies approach TRL 6 in the quest for lighter weight, lower cost.

Read More
Glass Fibers

Price, performance, protection: EV battery enclosures, Part 1

Composite technologies are growing in use as suppliers continue efforts to meet more demanding requirements for EV battery enclosures.  

Read More

Read Next

Ketones

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Aerospace

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
Aerospace

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Composites One