GKN Aerospace manufactures first demonstrator parts for Wing of Tomorrow program
Announced at the Paris Air Show, the company’s composite demonstrator wing components are part of the wing spar.
GKN Aerospace (St. Louis, Mo., U.S.) announced at the Paris Air show that it has manufactured the first demonstrator wing components for Airbus’ “Wing of tomorrow” research program. The parts are samples of a section of the wing spar. GKN Aerospace says its wing technology will significantly improve the productivity of the composites manufacturing process, and that the use of composite components can result in up to 20% weight savings on large commercial aircraft.
GKN Aerospace says it is using its experience in manufacturing wing trailing edges and in using advanced composites technology to accelerate the development of new composite assembly automation technologies for wing primary structures.
The company already manufactures composite wing components for Airbus, including the A380’s fixed trailing edge, and the wing leading edges for A380, A330 and A400M. For the A350 XWB, GKN Aerospace developed and now supplies the 27-meter-long rear wing spar and the inboard and outboard flaps (including skins, spars, ribs and leading edges).
“The manufacturing of the first composite demonstrators under the WoT program is a true milestone,” says John Pritchard, CEO for GKN Aerospace aerostructures and systems, Europe and Asia. “We are proud to be a partner of Airbus in the WoT research program. The demand for lighter, stronger and low-maintenance composite wing structures seamlessly fit our sustainability goals. The Aerospace Technology Institute is providing vital support for the U.K.’s position on the next generation of aircraft.”
Related Content
-
Plant tour: Arris Composites, Berkeley, Calif., U.S.
The creator of Additive Molding is leveraging automation and thermoplastics to provide high-volume, high-quality, sustainable composites manufacturing services.
-
Plant tour: Daher Shap’in TechCenter and composites production plant, Saint-Aignan-de-Grandlieu, France
Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.
-
Recycling end-of-life composite parts: New methods, markets
From infrastructure solutions to consumer products, Polish recycler Anmet and Netherlands-based researchers are developing new methods for repurposing wind turbine blades and other composite parts.