Ready-to-Ship Composites
Published

OCSiAl achieves graphene nanotube production capacity of 75 metric tonnes per year

The company’s recently completed Graphetron 50 facility in Russia has a production capacity of 50 metric tonnes per year.

Share

OCSiAl graphene nanotube production facility

A grand opening ceremony was held for the new facility in Novosibirsk Akademgorodok, Russia on Feb. 11, 2020. Source | OCSiAl

 

Global graphene nanotube manufacturer OCSiAl (Leudelange, Luxembourg and Columbus, Ohio, U.S.) has announced the launch of its second synthesis facility for graphene nanotubes, also known as single-wall carbon nanotubes.

The company reports that its recently completed Graphetron 50 facility in Novosibirsk Akademgorodok, Russia, which has a production capacity of 50 metric tonnes per year, is currently the world’s largest plant for graphene nanotube production. Commissioned in 2019 in test mode, Graphetron 50 has now reached its planned annual production capacity. According to OCSiAl, the company now accounts for more than 90% of the global production capacity for graphene nanotubes.

The first industrial-scale batch of graphene nanotubes – 1.2 metric tonnes – was synthesized by OCSiAl in 2015. The total combined annual capacity of the two OCSiAl production units has now reached 75 metric tonnes of nanotubes, which are marketed under the TUBALL brand name. 

OCSiAL carbon nanotube production

Source | OCSiAl

In 2017, OCSiAl signed a Memorandum of Understanding to construct a graphene nanotube factory in Luxembourg. The commissioning of the first production line with an annual capacity of up to 100 metric tonnes per year is scheduled for 2023.

To provide even better technical support for its customers in regions with a strong OCSiAl presence, the company has launched its two TUBALL Centers in Russia and China. These Centers also focus on developing new nanotechnology breakthroughs. For its European customers, OCSiAl will launch a third TUBALL Center in Luxembourg in 2020.

OCSiAl's annual production capacity has now reached 75 tonnes of graphene nanotubes. The growing market demand is closely related to the ongoing revolution in the electric vehicle field. If we take into account the official plans of the largest global car manufacturers, just the Li-ion batteries for them would require 250 tonnes of graphene nanotubes in 2025,” says Yury Koropachinskiy, president of OCSiAl.

Related Content

  • The making of carbon fiber

    A look at the process by which precursor becomes carbon fiber through a careful (and mostly proprietary) manipulation of temperature and tension.

  • Materials & Processes: Composites fibers and resins

    Compared to legacy materials like steel, aluminum, iron and titanium, composites are still coming of age, and only just now are being better understood by design and manufacturing engineers. However, composites’ physical properties — combined with unbeatable light weight — make them undeniably attractive. 

  • PEEK vs. PEKK vs. PAEK and continuous compression molding

    Suppliers of thermoplastics and carbon fiber chime in regarding PEEK vs. PEKK, and now PAEK, as well as in-situ consolidation — the supply chain for thermoplastic tape composites continues to evolve.

Custom Quantity Composite Repair Materials
Harper International Carbon Fiber
BARRDAY PREPREG
Composites One
Toray Advanced Composites
Adhesives for Composite Materials
HEATCON Composite Systems
CompositesWorld
Ready-to-Ship Composites