Composites One
Published

UBC engineers successfully develop carbon fiber from bitumen

Through a distinctive spinning process, the university team has enabled the production of carbon fiber for less than $12/kilogram, targeting high-volume industries like automotive.

Share

Finished carbon fibers derived from bitumen. Photo Credit, all images: UBC Applied Science/Paul Joseph

A new process developed at the University of British Columbia (UBC, Canada) has the potential to turn the ability to make lightweight composite electric vehicles (EVs) into reality. At her lab in the Faculty of Applied Science, UBC materials engineering assistant professor Dr. Yasmine Abdin and her collaborators, Dr. Frank Ko and Dr. Scott Renneckar, have successfully transformed bitumen into carbon fiber — spinning the black, sticky substance from Alberta’s oil sands into a crucial product for the energy transition.

Compared to gasoline-powered cars, battery electric vehicles (BEVs) can be hundreds to thousands of pounds heavier due to the weight of their batteries. “Building a car’s chassis or body with lightweight carbon fibers not only helps to compensate for a heavy EV battery pack, the carbon fibers also enhance a battery’s ability to stay cool, improves passenger safety and extends driving range,” Dr. Abdin, the project lead and an expert on polymer-based composite materials, explains.

However, producing carbon fiber is notoriously expensive, with about half of the cost attributed to the raw material, polyacrylonitrile (PAN). By switching to bitumen, researchers contend that costs can be significantly reduced while also mitigating the environmental impact associated with bitumen, which releases carbon dioxide when burned.

The team’s process is said to enable the production of carbon fiber for less than $12 per kilogram, in contrast to the typical commercial rate of $33 per kilogram.

“We are repurposing what is essentially a low-value product that can cause environmental damage, to produce materials that will enable clean tech,” Dr. Renneckar, a professor in the department of wood science at UBC and the Canada Research Chair in Advanced Renewable Materials, points out.

Dr. Yasmine Abdin with collaborators Dr. Frank Ko and Dr. Scott Renneckar and their research team. 

The process developed by Dr. Abdin and her colleagues was one of the winning solutions during the first two phases of the Carbon Fibre Grand Challenge, a competition launched by Alberta Innovates (Canada) to recover valuable products from oil sands.

At the core of the successful UBC formula lies a process that is not radically different from how carbon fibers are currently made, but in a distinctive method of spinning finer fibers while maintaining the fibers’ structural integrity. Additionally, the UBC team has developed two distinct fiber sizes — regular micro-diameter fibers, and nano-fiber structures, both derived from bitumen. The team’s process is said to enable the production of carbon fiber for less than $12 per kilogram, in contrast to the typical commercial rate of $33 per kilogram.

“With a price point of $12 per kilogram, high-volume industries like automakers will have the opportunity to use more carbon fiber,” Dr. Abdin says. “Currently, composite materials like carbon fibers comprise only about 15% of a car’s composition. Affordable carbon fibers can potentially double this figure, which could be a game changer.”

Electrospun carbon fiber mats. 

Electrospun carbon fiber mats. 

Dr. Abdin and her team plan to apply for the third phase of the Carbon Fibre Grand Challenge competition, which will involve testing of the fibers on a larger scale, ultimately leading to commercial-scale production. The additional funding in the third round will facilitate scaling up fiber production and the manufacturing of composite products.

Twelve teams were funded in phase two, but only five or six teams will be funded for the final phase. With $4 million in funding at stake, Dr. Abdin is gearing up for the future.

“Automakers aren’t the only industry we’re targeting with the cost and performance benefits of our fibers,” she adds. “We’re also exploring wider applications in wind turbines, structural batteries, supercapacitors, pipelines and even hockey sticks!”

Also read, “UCalgary researchers turn Alberta oilsands bitumen into high-value carbon fibers.”

Toray Advanced Composites
Adhesives for Composite Materials
Composites One
BARRDAY PREPREG
Custom Quantity Composite Repair Materials
Harper International Carbon Fiber
CompositesWorld
HEATCON Composite Systems
Composites product design
Airtech
MITO® Material Solutions
CAMX 2024

Related Content

The state of recycled carbon fiber

As the need for carbon fiber rises, can recycling fill the gap?

Read More
Trends

TU Munich develops cuboidal conformable tanks using carbon fiber composites for increased hydrogen storage

Flat tank enabling standard platform for BEV and FCEV uses thermoplastic and thermoset composites, overwrapped skeleton design in pursuit of 25% more H2 storage.

Read More
Aerospace

PEEK vs. PEKK vs. PAEK and continuous compression molding

Suppliers of thermoplastics and carbon fiber chime in regarding PEEK vs. PEKK, and now PAEK, as well as in-situ consolidation — the supply chain for thermoplastic tape composites continues to evolve.

Read More
Thermoplastics

CFRTP upper stage propellant tank

PROCOMP uses in-situ consolidation AFP and ultrasonic welding to demonstrate lightweight, novel tank design.

Read More

Read Next

Carbon Fibers

Bio-based acrylonitrile for carbon fiber manufacture

The quest for a sustainable source of acrylonitrile for carbon fiber manufacture has made the leap from the lab to the market.

Read More
Carbon Fibers

DITF develops water-spun lignin fibers as PAN precursor alternative

Lignin fibers produced via an aqueous solution and dry spinning process result in homogeneous, smooth-surfaced fibers that are more environmentally friendly and cost-saving.   

Read More
Fastening / Finishing

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Composites One