Composites, plastics injection molding generates highly visual parts
CAMX 2024: ColorForm and long fiber injection (LFI) technologies by KraussMaffei support automotive, consumer and other end markets in their quest for high-performance, lightweight parts with aesthetic qualities.
KraussMaffei (Munich, Germany and Hebron, Ky., U.S.) highlights various technologies and equipment for thermoset — mainly polyurethane (PUR)-based — plastics processing that are capable of generating visually aesthetic part surfaces. Serving customers in automotive interior trim and seating, refrigeration insulation as well as other lightweight applications, the company has experience with short- and continuous fiber-reinforced thermoset or reactive thermoplastic parts production.
Rooted in clear coat molding (CCM) technology, ColorForm, based on the principle of multi-component injection molding, generates high-quality cosmetic parts in a two-step process. First, an injection molded substrate is created, following by overmolding of the substrate with a PUR system. After curing and demolding, the part is ready for assembly e.g., for car interiors or — an application that is relatively new to ColorForm — relatively large vehicle exteriors that may even include self-healing surface properties.
KraussMaffei is also capable of achieving high-quality surfaces (surface coloring, gloss, smoothness and durability) for fiber composite parts, mainly focusing on agricultural or transportation vehicles, through a long fiber injection (LFI) process. Here, chopped glass fiber is embedded in a PUR matrix for weight reduction and reinforcement purposes. In order to combine this with high surface quality, there are two options: (1) the fiber-matrix mix is applied to a thermoplastic, deep-drawn film prior to curing, or (2) a spray paint and barrier coat is overmolded with the fiber-matrix mix, that provides the desired mechanical properties.
Related Content
-
Co-molding SMC with braided glass fiber demonstrates truck bed potential
Prepreg co-molding compound by IDI Composites International and A&P Technology enables new geometries and levels of strength and resiliency for automotive, mobility.
-
Optimized approach to predict delamination failure in CFRTP structures
ARRK Engineering and Mitsui Chemicals improved delamination prediction accuracy to help optimize absorbed energy/failure load for an overmolded TAFNEX CF/PP UD tape bumper beam.
-
INN-PAEK project succeeds in 100% recyclable turbine
European project replaces complex-shaped metal structure in aircraft cooling system with injection molded thermoplastic composite material for improved sustainability.