Noncontact digital gage enables precise materials, structural testing
CAMX 2024: Trilion Quality Systems is showcasing the Aramis optical strain gage, a material-independent measurement device with 3D-DIC capabilities.
Share
Trilion Quality Systems (King of Prussia, Pa., U.S.) exhibits its Aramis optical strain gage, a noncontact and material-independent measuring system that can provide critical data such as full-field optical strain, 3D displacement and vibration analysis with ease. Aramis is designed to be a cost-effective alternative for foil gages and extensometers. It can operate with 50 times less labor/time and provide 100 times more data, according to the company. With applications from finite element analysis (FEA) validation, material/structural testing, structural health monitoring and high-speed measurements, the Aramis optical strain gage can be used for a wide range of industries from automotive, aerospace, biomechanics and more.
At Aramis’ core is 3D digital image correlation (3D-DIC), a noncontact measuring technique based on advanced image processing, which can provide accuracy comparable to a mechanical gage. DIC is capable of mapping 3D coordinates and evaluating displacement and strain maps on the surface of measured samples. DIC uses a stochastic pattern and/or point markers to track the surface of the materials with subpixel accuracy or microns of motion.
In addition to its testing system, Trilion can perform its services on-site at customer facilities to provide flexibility and quick implementation or deployment of technologies.
Related Content
-
Plant tour: BeSpline/Addcomp, Sherbrooke, QC, Canada
Composites automation specialist increases access to next-gen technologies, including novel AFP systems and unique 3D parts using adaptive molds.
-
Jeep all-composite roof receivers achieve steel performance at low mass
Ultrashort carbon fiber/PPA replaces steel on rooftop brackets to hold Jeep soft tops, hardtops.
-
Optimized approach to predict delamination failure in CFRTP structures
ARRK Engineering and Mitsui Chemicals improved delamination prediction accuracy to help optimize absorbed energy/failure load for an overmolded TAFNEX CF/PP UD tape bumper beam.
Related Content
Plant tour: BeSpline/Addcomp, Sherbrooke, QC, Canada
Composites automation specialist increases access to next-gen technologies, including novel AFP systems and unique 3D parts using adaptive molds.
Read MoreJeep all-composite roof receivers achieve steel performance at low mass
Ultrashort carbon fiber/PPA replaces steel on rooftop brackets to hold Jeep soft tops, hardtops.
Read MoreOptimized approach to predict delamination failure in CFRTP structures
ARRK Engineering and Mitsui Chemicals improved delamination prediction accuracy to help optimize absorbed energy/failure load for an overmolded TAFNEX CF/PP UD tape bumper beam.
Read MoreActive core molding: A new way to make composite parts
Koridion expandable material is combined with induction-heated molds to make high-quality, complex-shaped parts in minutes with 40% less material and 90% less energy, unlocking new possibilities in design and production.
Read MoreRead Next
Automated robotic NDT enhances capabilities for composites
Kineco Kaman Composites India uses a bespoke Fill Accubot ultrasonic testing system to boost inspection efficiency and productivity.
Read MoreReinforcing hollow, 3D printed parts with continuous fiber composites
Spanish startup Reinforce3D’s continuous fiber injection process (CFIP) involves injection of fibers and liquid resin into hollow parts made from any material. Potential applications include sporting goods, aerospace and automotive components, and more.
Read MoreAll-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat
Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.
Read More