Composites One
Published

Electric power for aircraft on the horizon

As a general aviation enthusiast and co-pilot — my husband and I fly a Mooney on occasion — I have been closely following the news about the Solar Impulse plane and the team’s historic round-the-world flight, on solar power alone.

Share

Solar Impulse successfully completed its round-the-world flight this week. 

As a general aviation enthusiast and co-pilot — my husband and I fly a Mooney on occasion — I have been closely following the news about the Solar Impulse plane and the team’s historic round-the-world flight, on solar power alone. In case you’ve missed this news, Bertrand Piccard and Andre Borschberg started an epic demonstration in Abu Dhabi back on March 9, 2015, and successfully completed 17 legs and 40,000 km in their solar-powered electric Solar Impulse 2 aircraft and returned to their starting point this week, on July 26. The trip took much longer than expected, because the 5-day crossing of the Pacific from Nagoya, Japan to Hawaii caused damage to the aircraft’s batteries, necessitating a long 9-month layover in Honolulu for repairs. The aircraft of course employs composite materials, as CW has pointed out in some past articles, including this one: http://www.compositesworld.com/articles/solar-impulse-2-pulse-on-the-future. CW’s Heather Caliendo was on hand when the plane landed in Phoenix, during its North American legs: http://www.compositesworld.com/blog/post/up-close-and-personal-with-solar-impulse-2.

Piccard and Borschberg’s achievement coincides with several items I’ve noticed over the past couple of days. First, this week marks the Experimental Aviation Assn.’s (EAA) AirVenture air show in Oshkosh, WI, US, often the setting for news and trends. Airbus is there exhibiting its E-Fan aircraft for the first time in the US. The E-Fan was first introduced at Farnborough Air Show in 2014, and the all-electric plane crossed the English Channel in 2015. The version in Wisconsin this week is E-Fan version 1.2, which incorporates a hybrid electric/gasoline engine on display for the first time. Airbus has teamed with Siemens to develop this hybrid concept and eventually scale it up for viable commercial application. According to a Siemens press release, the CEOs of both companies, Tom Enders and Joe Kaeser, endorse a major joint project towards the electrification of aviation with the goal of demonstrating the technical feasibility of various hybrid/electric propulsion systems by 2020. A team of around 200 employees will be working on this project to develop electrically-powered aircraft. This strikes me as pretty big news.

AEAC's Sun Flyer is on display this week at the Oshkosh air show.

And they’re not the only ones developing electric power for aircraft. As just one example, a company here in Colorado unveiled two months ago the Sun Flyer, and it’s also on display this week at Oshkosh. Developed by Aero Electric Aircraft Corp. (AEAC) headed by well-known engineer pilot George Bye, the Sun Flyer is targeted to training schools and bringing down the cost of flying — the cost of a gallon of leaded fuel for conventional aircraft like our Mooney is currently priced at about $5 per gallon, which adds to the steep price of flight training and, some say, the dearth of student pilots. Bye claims that energy cost for an hour in his aircraft could be as little as $1. That could really change the general aviation landscape.

Then, the US Environmental Protection Agency (EPA) announced Monday that it will impose emissions limits on US commercial aircraft, along the lines of a United Nations recommendation announced in February for international flights. Those limits require a 4% reduction in fuel consumption during cruise, beginning in 2020. And Europe’s Clean Sky public/private partnership program has been looking for years at breakthrough technology to reduce aircraft emissions.

It seems to me that all of this is pointing toward a shift in aviation, mirroring what has happened in the automotive sector: Planes, like cars, are being pulled into a new realm of lighter weight materials and alternative, even renewable, power sources, to meet increasingly more stringent emission targets. Composites, of course, have a place in this new scheme, so it’s a trend that may ultimately benefit our industry. And it would certainly make a ride in our airplane a lot quieter…

Compression Molding
Composites One
Janicki employees laying up a carbon fiber part
Park Aerospace Corp.
pro-set epoxy laminate infusion tool assembly
Composites product design
Carbon Fiber 2024
Release agents and process chemical specialties
CAMX 2024
CompositesWorld
HEATCON Composite Systems
MITO® Material Solutions

Related Content

AMRC Training Centre introduces composites apprenticeship opportunity

With partners McLaren and Teledyne CML Composites, the Training Center will train new composites technicians in South Yorkshire to build up the future industry workforce.

Read More

Zeiss, Imperial College London summer school enhances materials, sustainability learning

Twenty-four next-generation students attended the Imperial College London this August to advance their scientific knowledge, with workshops, lectures, activities and a composites competition.

Read More
Troubleshooter

The importance of resin mixing procedures in the composites shop

What is considered to be common knowledge when storing, handling, weighing, mixing and deploying epoxy resins and adhesives has brought to light the need for tighter control, improved practices.  

Read More
Automation

Coriolis Composites installs AFP machine at Sabanci University

C1 robot contributes to technology development at the Integrated Manufacturing Technologies Research and Application Center (SU IMC) in Istanbul.

Read More

Read Next

Fastening / Finishing

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Aerospace

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
Thermoplastics

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Composites One