Composites One
Published

Innovation: Moving faster than ever

The rate of composites innovation is higher than I’ve ever seen, and the implications are significant.

Share

“Everything that can be invented has been invented.” This line, famously but falsely attributed in 1899 to Charles Duell, commissioner of the US Patent Office, as part of a recommendation to shut down the Patent Office, nonetheless points to some common present-day assumptions that certain technologies have gone as far as they can go. Moore’s Law in semiconductors, for example, which, while slowing, may not yet be fully dead. Or the common trope that “automakers have taken powertrain technology as far as they can, so now they have to rely on lightweight composites to improve fuel efficiency.” Inevitably, within days, an announcement comes out disproving the notion, as an OEM unveils a new transmission with more speeds, or cylinder deactivation, or an improved hybrid vehicle. I’ve seen that movie too many times over the years.

In 1970, Alvin Toffler’s Future Shock popularized the feeling people have when “too much change occurs in too short a period of time.” But looking back, 1970 seems quite placid compared to today’s world. By some estimates, we generated more data during the past two years than has been created in the entire history of the human race up to two years ago. By 2020, an estimated 50 billion smart connected devices will populate the planet. Big Data, the Internet of Things and Industry 4.0 are all hurtling us toward ever greater “information overload.” Much of this is being enabled by continuing advances in computational speed (thanks to Moore’s Law) and technology that increasingly puts information quite literally at our fingertips (or eyes, ears and brains). We’re barely comfortable using a new technological marvel or handheld device only to find it quickly replaced by something even smarter, faster and cheaper. 

We’ve become used to this in the electronics industry. But what about the composites industry? Is it experiencing an electronics-like acceleration in technological development? I believe it is. From my perspective, the rate of composites innovation today is higher than I have ever seen, and the implications are significant.

One implication is that the innovation locus is changing. From the 1970s to the 1990s, it was the aerospace and defense industries taking the lead in advanced composites. But recent history indicates some resistance to change: The Boeing 777X and F-35, for example, are built predominantly with fibers and resin systems developed in the 1980s. It’s pretty clear that the industrial market has taken the lead in disrupting the status quo.

That brings us to the second implication: Now, more than ever, it is difficult to define the state of the art for many aspects of composites technology. As soon as you think you know who is leading, someone comes up with a better — faster, cheaper, stronger (you pick which adjective) — way to achieve the same goal. Take high-pressure resin transfer molding (HP-RTM), for example. Ten years ago, 10-15 minutes was considered fairly fast for parts the size of an automotive roof panel. Three years ago, this dropped to five minutes, and today’s resin formulations are able to cure in under two minutes, assuming we can get them into the mold fast enough. In fact, BMW is making many carbon fiber/ epoxy parts for their vehicles in two minutes using “wet pressing,” a highly automated version of what used to be a low-tech “mix and pour” process. Who needs HP-RTM when you can simply do this?

Other areas of innovation abound. Novel low-cost and low-energy precursors for carbon fiber, rapid and low-waste preforming technologies, and thermoplastic overmolding of structural inserts are also moving forward with abandon. And although it’s become ingrained that we cannot accurately predict crash behavior of composites, I’ve seen plenty of recent demonstrations that we can, indeed, do so.

Then there’s polymer 3D printing. It’s gone from shoebox size to full cars and large tools in the short span of three years (a recently printed tool for Boeing was certified to be a record in terms of dimension — certain to be superseded in 2017, if not before). There are efforts to do the same in metallic 3D printing, which will transform the tooling industry.

And just a few years ago, there were only a handful of companies with promising technologies for recycling carbon fiber composites. Today, there are dozens, and the long-term survival of each of these service providers will depend on its ability to create a compelling value proposition beyond landfill avoidance.

As part costs come down and the market grows, there will be room for many materials and many processes. However, that brings up a third implication: This new landscape makes managers’ jobs even tougher — what investments do we make in capital and R&D that won’t be obsolete in two years? There are no easy answers to this question, but it sure feels great to be aboard this fast-moving train! 

Toray Advanced Composites
Composites One
Adhesives for Composite Materials
Custom Quantity Composite Repair Materials
BARRDAY PREPREG
Harper International Carbon Fiber
Carbon Fiber 2024
CompositesWorld
CompositesWorld
Airtech
NewStar Adhesives - Nautical Adhesives
Composites product design

Related Content

Carbon Fibers

The potential for thermoplastic composite nacelles

Collins Aerospace draws on global team, decades of experience to demonstrate large, curved AFP and welded structures for the next generation of aircraft.

Read More

Composite rebar for future infrastructure

GFRP eliminates risk of corrosion and increases durability fourfold for reinforced concrete that meets future demands as traffic, urbanization and extreme weather increase.

Read More
Bonding/Welding

Manufacturing the MFFD thermoplastic composite fuselage

Demonstrator’s upper, lower shells and assembly prove materials and new processes for lighter, cheaper and more sustainable high-rate future aircraft.

Read More
Carbon Fibers

Carbon fiber in pressure vessels for hydrogen

The emerging H2 economy drives tank development for aircraft, ships and gas transport.

Read More

Read Next

Additive Manufacturing

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Carbon Fibers

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Aerospace

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
Composites One