Roboze supports F1 composite brake cooling duct manufacture
Carbon fiber-reinforced PEEK composites, 3D printing services improve production time and costs of complex motorsport parts for Visa Cash App RB F1 team.
Aided by Roboze’s (Bari, Italy) Carbon PEEK materials and Argo 500 Hyperpeed additive manufacturing (AM) system, the Visa Cash App RB Formula One (F1) team (VCARB) has achieved success in significantly reducing production costs and lead times for its brake cooling ducts, a feature that brings in air to cool F1 car brakes and improve aerodynamic performance.
“Traditional production of brake ducts imposed long delivery times and high costs,” explains Simone Balilla, head of production of the Visa Cash App RB F1 team. “Each component had to be perfectly aligned and assembled, which required an enormous amount of time and resources.” This included creating the molds to design such complicated components, which often increased production time and overall costs, as molds had to be produced individually and then assembled.
A supplier of high-performance 3D printers, materials and technology for additive manufacturing (AM), Roboze optimizes every phase of production of high-precision technical parts, from design to final manufacture, providing custom solutions for the specific needs of various sectors such as motorsport.
These capabilities were what enabled the F1 team to achieve production of such complex parts with high accuracy and repeatability. Eliminating mold development completely reduced design and production time. Moreover, the use of carbon fiber-reinforced polyetheretherketone (PEEK) further reduced production costs, offering high-quality components at a more competitive price, and maintained performance reliability, even under extreme conditions. In total, production was improved by 68%, lead time by 66% and design time by 86%.
“The speed with which we can go from design to finished component with Roboze’s technology was a key factor in our choice,” says Balilla. “It allowed us to be much more agile and responsive, with the opportunity to develop and test components between races.”
The collaboration is detailed more in a recent white paper on Roboze’s website, further exploring how Carbon PEEK and AM were implemented, as well as final results.
Related Content
-
MFFD thermoplastic floor beams — OOA consolidation for next-gen TPC aerostructures
GKN Fokker and Mikrosam develop AFP for the Multifunctional Fuselage Demonstrator’s floor beams and OOA consolidation of 6-meter spars for TPC rudders, elevators and tails.
-
Welding is not bonding
Discussion of the issues in our understanding of thermoplastic composite welded structures and certification of the latest materials and welding technologies for future airframes.
-
PEEK vs. PEKK vs. PAEK and continuous compression molding
Suppliers of thermoplastics and carbon fiber chime in regarding PEEK vs. PEKK, and now PAEK, as well as in-situ consolidation — the supply chain for thermoplastic tape composites continues to evolve.