Ready-to-Ship Composites
Published

Looking for Lindberghs

Every paradigm-shifting invention throughout human history has been met with skepticism. CW editor-in-chief Jeff Sloan says the composites industry has need of those willing to attempt what most believe impossible.

Share

I am reading a book called The Aviators, by Winston Groom. Engagingly written, well researched and insightful, it tells the story of the three aviators who, Groom argues, are most responsible for the survival and development of the US aviation industry, especially in its nascent period in the early 20th Century: Eddie Rickenbacker, Jimmy Doolittle and Charles Lindbergh.

One of the things I find so intriguing about the study of such a history is the opportunity to understand people and events in the context of their time. Too often, when we study historical events, we are (whether we know it or not) biased by the outcome. We know, for instance, who won the war, but we don’t appreciate that those fighting in the war didn’t have that certainty of outcome; in fact, they labored under great uncertainty, fear and distress. (This is why historians so highly value diaries and journals — they are untainted by hindsight.)

Today, when we look at the aerospace industry, we see the result of 100-plus years of innovation, daring and technological advancement that have led, apparently, to this point: Global, trans-ocean, high-speed passenger travel; supersonic, super-weaponized fighters; stealthy, nimble unmanned aircraft; manned and unmanned spacecraft.

There was, however, a time when such an outcome was inconceivable and, thus, unlikely. Groom makes clear in The Aviators that governments and private industry struggled, early on, to understand if and how the airplane could be useful as a vehicle for commercial or military use. The United States military, in particular, was reluctant to incorporate aircraft into its arsenal, even after the success fighter pilots enjoyed in World War I. 

This uncertainty is one reason why Lindbergh’s nonstop, transatlantic flight from New York to Paris in 1927 was so monumental. When Lindbergh landed in Paris, he almost single-handedly ushered in a new mode of human travel. Indeed, today it’s extremely difficult for us to imagine what our lives would be like without the speed and convenience of air travel. It seems like it was inevitable. But before Lindbergh took off, very few people thought it could be done. No less than Wilbur Wright, one of the inventors of the first airplane, in fact, believed that such a flight in an airplane was impossible. Lindbergh succeeded because he was willing to apply technology and ideas that others hadn’t: He flew a more aerodynamic mono-wing plane; he flew alone (no navigator); he eschewed extra weight (he even trimmed the edges off of his navigation maps!); he flew what was, effectively, a fuel tank with wings.

Of course, the aerospace industry is not unique. Every paradigm-shifting invention throughout human history has been met with skepticism. Even the wheel itself, one can imagine, must have induced much head-scratching before its potential was realized.

Composites are no different, and it would be helpful if we could zip 50 years into the future to get a glimpse of where carbon fiber and glass fiber structures are headed. Instead, we’re here, in the moment. In context. And what is that context? Over the past 40 years, composites have seen tremendous growth and evolution, but in some quarters, they’re still that poorly understood “niche” material — the square peg manufacturers want to squeeze into the round hole now occupied by metals and concrete and other established materials.

The times require Rickenbackers, Doolittles, Lindberghs — people willing to evangelize, innovate, take risks and apply composites in “impossible” ways. The good news is that the composites industry already has such leaders. We just need to let them fly.

Keyland Polymer Webinar Coatings on Composite & AM
Gurit Advanced Composite Materials & Solutions
Toray Advanced Composites hi-temperature materials
Composites One
world leader in braiding technology
Custom Quantity Composite Repair Materials
Harper International Carbon Fiber
BARRDAY PREPREG

Related Content

Epoxies

Plant tour: Airbus, Illescas, Spain

Airbus’ Illescas facility, featuring highly automated composites processes for the A350 lower wing cover and one-piece Section 19 fuselage barrels, works toward production ramp-ups and next-generation aircraft.

Read More
Prepregs

TCR Composites introduces TR1116 snap-cure epoxy prepreg resin system

Designed for press-cure applications, the resin system is highlighted for its snap-cure capability and tailored properties.

Read More
Epoxies

Plant tour: Albany Engineered Composites, Rochester, N.H., U.S.

Efficient, high-quality, well-controlled composites manufacturing at volume is the mantra for this 3D weaving specialist.

Read More
Sustainability

Bio-based epoxy, recycled materials increase sustainability of all-terrain snowboards

Aiming for a smaller environmental footprint while maintaining high performance, Salomon’s Highpath snowboard line incorporates bio-based epoxy, glass and basalt fiber stringers and recycled materials.

Read More

Read Next

Defense

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Design/Simulation

Modeling and characterization of crushable composite structures

How the predictive tool “CZone” is applied to simulate the axial crushing response of composites, providing valuable insights into their use for motorsport applications.

Read More
Aerospace

Plant tour: A&P, Cincinnati, OH

A&P has made a name for itself as a braider, but the depth and breadth of its technical aptitude comes into sharp focus with a peek behind usually closed doors.

Read More
Ready-to-Ship Composites