Ready-to-Ship Composites
Published

Not your average carbon fiber part

A Swedish industrial designer and artisan, Ragnar Friberg, contacted CW recently about a new project: a one-of-a-kind custom champagne glass and an accompanying storage cabinet that incorporates carbon fiber — along with a number of high-end materials.

Share

This exclusive champagne glass and protective cabinet, incorporating carbon fiber/epoxy, comes from Swedish designer Ragnar Friberg.

A Swedish industrial designer and artisan, Ragnar Friberg, contacted CW recently about a new project: a one-of-a-kind custom champagne glass and an accompanying storage cabinet that incorporates carbon fiber — along with a number of high-end materials including diamonds, gold, porphyry stone and black oak wood from the 15th Century. The founder of the design firm RAF (Stockholm), Friberg tells us that his years of experience with composites in power boat racing, where he constructed his own boats, led him to eventually build a business where he combines carbon fiber with other fine materials to make beautiful, exclusive yet useful articles. 

Friberg envisioned a 305 mm-tall champagne flute with a carbon fiber/epoxy cup combined with a gold stem ornamented with inlays, on an 18K solid gold base. The entire glass weighs 190 grams, with the base weighing 100 grams, “to balance the cup when it’s been filled with champagne,” says Friberg. He explains that the cup was made with 6 plies of a 1k 2x2 woven twill, 150 grams per square meter (gsm) and 1 mm thick, with the fabric supplied by textile weaver C. Cramer & Co.  (Heek, Germany). The fabric was wet out with an epoxy supplied by Huntsman Advanced Materials (The Woodlands, TX, US). Friberg explains that he rejected prepreg because “It looked too perfect, too sterile. I wanted to add a blue color to the epoxy resin, so that the cured cup and stem inlays would be faintly blue.” The biggest challenge was applying the gold leaf. After wetting the first ply with resin, he placed the gold leaf onto the wet-out fabric on a vacuum table, he explains: “I had to get the gold leaf to really sink into the fiber weave, and the vacuum helped in that regard.” Placing the gold-treated ply in the mold was also tricky, to avoid air entrapment and cracking of the very thin gold layer. After nearly 100 attempts to get the gold layer as he wanted it, Friberg says he switched to an epoxy with higher flexibility, which prevented cracking in the gold. To ensure the integrity of the gold/carbon bond, the cup was molded in two halves, with the inner 3 plies (including the gold) molded around an conical aluminum mandrel, and the outer three plies placed in a matching female mold. The entire layup was oven-cured at 60°C for 16 hours.

The cup is supported by four gold legs, which dovetail into the stem, which has carbon fiber inlays.

After demolding, the cup halves were bonded together (with seams offset by 90°), and the cup was sanded, clear-coated and polished. The photos show how the bottom of the cup is finished with an adhesively-bonded cast gold cone. Four thin, solid gold legs were glued to the cup’s exterior; the legs extend down past the cone to the square stem, where they are attached via dovetailed slots. The stem combines more carbon/epoxy, 15th Century black oak and lizard skin inlays over solid 18K gold; the stem in turn is fastened to the gold base with 4 gold screws. Three diamonds totalling 2.09 carats are part of the flute, including one that is set inside the cup at the bottom. Says Friberg, ”The diamond inside stimulates the champagne bubbles and boosts the bouquet.”

The cup is made with a 1K carbon twill, with gold leaf applied to the cup's inner surface before cure. 

The hefty 8 kg, 450 mm-high cabinet exists to hold and protect the glass. It is a combination of gold, porphyry stone, lizard skin and silk. All together, Friberg estimates that more than 1000 hours have gone into making the glass and cabinet, which, when offered to the market, will command approximately $120,000. When asked what motivates his work, Friberg says that he got interested in composites in the 1990s and has been working on projects that would showcase carbon fiber ever since: “I came up with the idea to make something really nice — to make a truly beautiful thing is worth trying.”  Friberg's web site (rafstockholm.com/index.html) has more photos and other products as well.

Adhesives for Composite Materials
Harper International Carbon Fiber
Toray Advanced Composites
Custom Quantity Composite Repair Materials
BARRDAY PREPREG
Composites One
Airtech
MITO® Material Solutions
HEATCON Composite Systems
Advert for lightweight carrier veils used in aero
Carbon Fiber 2024
CompositesWorld

Related Content

Carbon Fibers

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More
IACMI

The state of recycled carbon fiber

As the need for carbon fiber rises, can recycling fill the gap?

Read More
Aerospace

PEEK vs. PEKK vs. PAEK and continuous compression molding

Suppliers of thermoplastics and carbon fiber chime in regarding PEEK vs. PEKK, and now PAEK, as well as in-situ consolidation — the supply chain for thermoplastic tape composites continues to evolve.

Read More
Aerospace

Carbon fiber in pressure vessels for hydrogen

The emerging H2 economy drives tank development for aircraft, ships and gas transport.

Read More

Read Next

Aerospace

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
ATL/AFP

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Plant Tours

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Composites One