Airtech
Published

RV manufacturer converts to all-composite motorhome shells and floors

Since 1971, Trail Wagons - Chinook RV Inc. has built motorhomes with one-piece, molded fiberglass shells at its 115,000 ft2 plant in Yakima, Wash, U.S.A. Claiming that the shell design is essential to RV structural integrity, ease of maintenance and weather resistance, the company offers the U.S. RV industry's only

Share

Since 1971, Trail Wagons - Chinook RV Inc. has built motorhomes with one-piece, molded fiberglass shells at its 115,000 ft2 plant in Yakima, Wash, U.S.A. Claiming that the shell design is essential to RV structural integrity, ease of maintenance and weather resistance, the company offers the U.S. RV industry's only lifetime structural warranty. In 2002, however, the shells were re-engineered in an effort to eliminate stress cracks in the finish that previously combined gel coat, ceramic shield, and a single polyester skin laminate with plywood stiffening panels. Chinook's new shell is a lightweight sandwich construction, featuring a vinyl ester resin composite recommended by Eastman Chemical Company (Kingsport, Tenn., U.S.A., select 201), which assures shell stability in temperatures from well below freezing to as high as 110°C/230°F, preventing blistering or cracking. Gel coat is applied to the massive one-piece molds for the company's 21 ft and 24 ft models. A layer of vinyl ester resin and chopped strand glass are sprayed up. Then, 0.5-inch-thick closed-cell PVC structural foam from DIAB Inc. (Desoto Texas, U.S.A., select 202) is embedded, using a vacuum bag, in putty made from Eastman's polyester resin, followed by a final sprayup layer of polyester resin and fiberglass.

"After just one year of using the new shells, the results have been astounding - none of the new RVs have shown a single stress crack," says Jeff Gaskell, Chinook's Fiberglass Division manager, who was so impressed, he initiated further innovations: For Chinook's new and larger 25 ft and 27 ft motorhomes, which accommodate queen-size beds, dry-baths and other amenities, Gaskell needed to reduce floor weight to avoid exceeding the U.S. standard for Gross Vehicle Weight (GVW). Previously, floors were made of laminated 1.5-inch plywood, and workers used handheld laminating rollers to apply the polyester resin/glass-laminated bottom. Gaskell had seen a vacuum infusion process used to make fiberglass parts for yachts, and adapted it for fabrication of a new floor design featuring sandwich construction. Skins of 40 oz/yd2 quadraxial glass fabric from Vectorply (Phenix City, Ala., U.S.A., select 203) are layed up in a flat mold on both sides of DIAB balsa core that comes pre-cut to size, scored and perforated to ensure uniform resin transfer throughout the part. Sixteen gallons of Eastman's vinyl ester resin are required to infuse an entire, vacuum-bagged 25-ft floor (see bottom photo), optimizing glass-to-resin ratio, eliminating waste from overspray and resulting in a 15 percent resin savings. Infusion takes about 11 minutes, and (due to Eastman's customized promoter and initiator system) the floor is ready for demolding after only a two-hour cure, with nearly 100 percent reduction in styrene emissions. "The process has reduced the floor weight by 35 percent and increased compression, tensile, and sheer strength by 300 percent, enabling us to expand motorhome size," says Gaskell.

Even more impressed than before, Gaskell now plans to vacuum infuse shells as well, and is experimenting with using Light RTM(resin transfer molding) to replace open molding for smaller parts, such as storage doors, running boards and shower components.

Zone 5 CLEAVER
Airtech
Coast-Line Intl
Advert for lightweight carrier veils used in aero
Release agents and process chemical specialties
Composites product design
CAMX 2024
HEATCON Composite Systems
NewStar Adhesives - Nautical Adhesives
Carbon Fiber 2024
Airtech
CompositesWorld

Related Content

ATL/AFP

Trelleborg launches low-friction thermoplastic composite bearing

The HiMod Advanced Composite Bearing Plus is a dual-layer bearing with a low-friction PEEK liner that doubles as an impermeable sealing surface, in addition to 50% less sliding friction, increased wear performance.  

Read More
Aerospace

COMPINNOV TP2 project promotes use of thermoplastics in aerospace

Completed in 2023, COMPINNOV TP2 explored thermoplastic composites, enhancing the understanding between prepregs and production methods to foster the potential for French aerospace innovation.

Read More
Curing

SmartValves offer improvements over traditional vacuum bag ports

Developed to resolve tilting and close-off issues, SmartValves eliminate cutting through vacuum bags while offering reduced process time and maintenance.

Read More
Epoxies

Plant tour: Albany Engineered Composites, Rochester, N.H., U.S.

Efficient, high-quality, well-controlled composites manufacturing at volume is the mantra for this 3D weaving specialist.

Read More

Read Next

Past, Present and Future

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
Carbon Fibers

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
ATL/AFP

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Airtech International Inc.