Airtech
Published

ACT Blade, AMRC cooperate on 13m blade demonstrator

ACT Blade’s wind turbine blade design uses a textile shell overwrapping a structural spar to help reduce blade weight and manufacturing cost. 

Share

ACT Blade chief executive Sabrina Malpede.

ACT Blade chief executive Sabrina Malpede. Source | ACT Blade

The Advanced Manufacturing Research Centre (AMRC) at the University of Sheffield (Sheffield, U.K.) reported on July 2 that has cooperated with ACT Blade (Edinburgh, Scotland) on the manufacture of a 13m wind turbine blade demonstrator that features ACT Blade’s new architecture that could substantially reduce blade weight and manufacturing cost.

The novel lightweight composite blade structure, which is wrapped in a textile shell, is up to a third lighter compared with typical fibreglass blade designs, can be made longer to generate more energy and, ultimately, has the potential to make offshore wind — already one of the cheapest major energy sources in the UK — even easier and cheaper to harness.

The first prototype produced under the Innovate UK-funded project was manufactured and tested in collaboration with a consortium of U.K. research partners that includes the University of Sheffield Advanced Manufacturing Research Centre (AMRC), the Lightweight Manufacturing Research Centre, sister centre to the University of Strathclyde’s Advanced Forming Research Centre (AFRC), both part of the National Manufacturing Institute Scotland, and the Offshore Renewable Energy (ORE) Catapult.

Dr. Sabrina Malpede, chief executive of ACT Blade, says, “The novel ACT Blade is a tensioned textile-covered wind turbine blade that can actively change shape to control loads. It is 32% lighter than conventional blades, enabling it to be 10% longer and directly contributing to the production of 9% more energy."

“The ACT Blade is not only the lightest but also the most modular blade,” said Dr Malpede. “That means we use components that can be manufactured in parallel, using smaller and therefore cheaper tooling, reducing costs by 60%. It also requires lower space — its factory will be 47% smaller than those of conventional blades — and lower energy which makes the manufacturing process less expensive compared with that of conventional blades.”

The AMRC’s John Halfpenny headed up the Sheffield team that worked on a 13m prototype blade alongside High Value Manufacturing (HVM) Catapult colleagues at the Lightweight Manufacturing Centre. Halfpenny, technical lead at the AMRC Composite Centre, says, “This is a completely new type of offshore turbine blade developed by ACT Blade that could be a major disruptor in the renewable energy sector.

Malpede adds, “As a micro-innovative start up, we have a small but highly competent R&D team in aerodynamic structure and composite design. As we were engaging with the engineering of the first prototype, we knew the AMRC was the right partner for us, providing the design for manufacturing support, assisting with advanced finite element analysis and, ultimately, supporting the manufacturing process.”

The AMRC undertook the crucial Finite Element Analysis (FEA) work to validate the new blade design. This allowed Halfpenny and his team to locate potential problems in the design, including areas of tension and weak spots, before producing CAD data to optimize the structural design of the prototype. They also designed patterns, molds and associated fixtures to manufacture the first blade.

Professor Iain Bomphray, director of the Lightweight Manufacturing Centre (LMC), is hosting the ACT Blade development, supporting the engineering and manufacturing of the new technology: “Wind energy is a natural energy source but even this clean energy source can be made even more sustainable still, by reducing the carbon footprint associated with the manufacture and transport of parts and by making the harnessing of the energy more efficient.

“The LMC was established as a center of excellence for innovative lightweight solutions, with the aim of helping manufacturing businesses large and small to overcome the challenges of the modern world. Our cross-Catapult collaboration working with ACT Blade on this exciting technology has allowed us to do exactly that.”

The UK is the world leader in offshore wind, with more installed capacity than any other country. Already, offshore wind powers the equivalent of 4.5 million homes annually and is set to power more than 30% of British electricity by 2030.

The 13m prototype was completed in February 2020 and testing began soon after with static tests completed at ORE Catapult’s National Renewable Energy Centre in Blyth in April. Results showed the blade could withstand extreme loads and every type of direction and twist, going beyond those predicted for an in-service turbine.

The blade is now undergoing further testing and in the coming months ACT Blade will work with the Energy Technology Centre to prepare for installation of three blades on a working wind turbine at the Myres Hill Wind Farm just south of Glasgow in Scotland.

Zone 5 CLEAVER
Coast-Line Intl
Airtech
CompositesWorld
HEATCON Composite Systems
Release agents and process chemical specialties
NewStar Adhesives - Nautical Adhesives
Carbon Fiber 2024
Airtech
Advert for lightweight carrier veils used in aero
CompositesWorld
Composites product design

Related Content

Work In Progress

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More
Trends

Honda begins production of 2025 CR-V e:FCEV with Type 4 hydrogen tanks in U.S.

Model includes new technologies produced at Performance Manufacturing Center (PMC) in Marysville, Ohio, which is part of Honda hydrogen business strategy that includes Class 8 trucks.

Read More
Filament Winding

Carbon fiber in pressure vessels for hydrogen

The emerging H2 economy drives tank development for aircraft, ships and gas transport.

Read More
Sustainability

Forvia brand Faurecia exhibits XL CGH2 tank, cryogenic LH2 storage solution for heavy-duty trucks

Part of its full hydrogen solutions portfolio at IAA Transportation 2022, Faurecia also highlighted sustainable thermoplastic tanks and smart tanks for better safety via structural integrity monitoring.

Read More

Read Next

Ketones

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Aerospace

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
Plant Tours

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Airtech International Inc.