Cygnet Texkimp and University of Manchester develop 3D winding technology
The machine is based on a 9-Axis robotic winding concept and winds carbon fiber into lightweight parts for automotive and aerospace markets.
Advanced engineering company Cygnet Texkimp (Northwich, UK) and The University of Manchester (Manchester, UK) announced in early July they have developed a machine that winds carbon fiber into lightweight parts for automotive and aerospace.
The 3D Winder is the world’s first robotic 3D winding machine capable of making complex parts such as fuel pipes, cant rails and aeroplane wing spars. According to Cygnet Texkimp, it can also be adapted to produce components for other markets including wind blades for the energy sector.
The technology is the result of a two-year Innovate UK (Swindon, UK) Knowledge Transfer Partnership (KTP) between the Northwich-based manufacturer and The University of Manchester’s School of Materials to develop a new way of manufacturing composite components cost-effectively in high volumes and at high speeds.
The machine is based on the 9-Axis robotic winding concept first developed by the University’s Professor Prasad Potluri and uses a technique known as filament winding. It works by laying down carbon fibers much more quickly than traditional methods such as braiding and weaving, with trials showing it has the potential to wind an aircraft spar in just a few minutes. The technology was further developed at Cygnet Texkimp’s R&D center.
The company is now using a production-scale version of the 3D Winder to carry out advanced trials with international part manufacturers.
Related Content
-
ECOHYDRO project to enable recyclable composites for hydrogen storage
With the involvement of two schools from the Institut Mines-Télécom, the 4-year project aims to improve the intrinsic properties of a composite material based on Elium via four concrete demonstrators.
-
Hexagon Purus opens new U.S. facility to manufacture composite hydrogen tanks
CW attends the opening of Westminster, Maryland, site and shares the company’s history, vision and leading role in H2 storage systems.
-
Infinite Composites: Type V tanks for space, hydrogen, automotive and more
After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.