Release agents and process chemical specialties
Published

NASA moves into next phase of high-speed supersonic travel project

Under the Advanced Air Vehicle’s Program, Boeing- and Northrop Grumman-led teams are charged with developing technology roadmaps with vehicle concepts that can operate at Mach 2+ speeds.

Share

Concept illustration of a Boeing high-supersonic commercial passenger aircraft. Photo Credit: Boeing

NASA (Washington, D.C., U.S.) has issued 12-month contracts to two U.S. aerospace industry teams to study technology for sustainable high-speed airliner designs capable of Mach 2+ under the research agency’s Advanced Air Vehicle’s Program (AAVP).

The teams, led by Boeing (Arlington, Va., U.S.) and Northrop Grumman (Palmdale, Calif., U.S.), are charged with developing technology roadmaps covering key elements including airframe, power, propulsion, thermal management and composite materials that can operate at high Mach speeds. The teams also have been asked to develop designs for concept vehicles.

AAVP “studies, evaluates and develops technologies and capabilities for new aircraft systems … to enable new aircraft to fly safer, faster, cleaner, quieter and use fuel far more efficiently,” according to the NASA website. The program has been exploring whether the commercial market could support travel at four times faster than what is currently possible.

The company recently investigated a business case for supersonic passenger travel through aircraft that could theoretically travel between Mach 2 and Mach 4 (1,535-3,045 miles per hour at sea level). By comparison, today’s larger airliners cruise at roughly 600 miles per hour, or about 80% of the speed of sound. The studies concluded potential passenger markets exist in about 50 established routes that connect cities. Since the U.S. and other nations prohibit supersonic flight over land, the studies’ findings covered transoceanic travel, including high-volume North Atlantic routes and those crossing the Pacific.

Moreover, NASA’s Quesst mission, with its X-59 quiet supersonic aircraft, aims to provide data to regulators that would help change the overland supersonic flight rules. “We conducted similar concept studies over a decade ago at Mach 1.6-1.8, and those resulting roadmaps helped guide NASA research efforts since, including those leading to the X-59,” Lori Ozoroski, project manager for NASA’s Commercial Supersonic Technology Project, says. “These new studies will both refresh those looks at technology roadmaps and identify additional research needs for a broader high-speed range.”

AAVP is now moving into the next phase of its high-speed travel research, which includes issuing two contracts to companies to develop concept designs and technology roadmaps. The roadmaps will explore air travel possibilities, outline risks and challenges and identify needed technologies to make Mach 2+ travel a reality.

Boeing’s team includes supersonic aircraft developer Exosonic (San Jose, Calif., U.S.), GE Aerospace (Cincinnati, Ohio, U.S.), Georgia Tech Aerospace Systems Design Laboratory (Atlanta, U.S.), Rolls-Royce North American Technologies (Indianapolis, Ind., U.S.) and others. Northrop Grumman Aeronautics Systems is leading the second team with partners Blue Ridge Research and Consulting (Asheville, N.C., U.S.), Boom Supersonic (Denver, Colo., U.S.) and Rolls-Royce North American Technologies.

“The design concepts and technology roadmaps are important to have in our hands when the companies are finished,” Mary Jo Long-Davis, manager of NASA’s Hypersonic Technology Project, notes. “We are also collectively conscious of the need to account for safety, efficiency, economic and societal considerations. It’s important to innovate responsibly so we return benefits to travelers and do no harm to the environment.”

Once the industry engagement phase is completed, NASA and its industry and academic partners will decide whether to continue the research with its own investments.

Editor’s Note: Supersonic developments will most likely impact lightweight materials like high-temperature carbon fiber-reinforced polymers (CFRP) and ceramic matrix composites (CMC). Read:

Park Aerospace Corp.
Ad showing Janicki CNC Mill machining part in tool
Composites One
Release agents and process chemical specialties
Compression Molding
Wickert Hydraulic Presses
HEATCON Composite Systems
CompositesWorld
Alpha’s Premier ESR®
NewStar Adhesives - Nautical Adhesives
ColorForm multi-component injection
Eliminate Quality Escapes  With LASERVISION AI

Related Content

Fabrics/Preforms

Plant tour: Joby Aviation, Marina, Calif., U.S.

As the advanced air mobility market begins to take shape, market leader Joby Aviation works to industrialize composites manufacturing for its first-generation, composites-intensive, all-electric air taxi.

Read More
Carbon Fibers

PEEK vs. PEKK vs. PAEK and continuous compression molding

Suppliers of thermoplastics and carbon fiber chime in regarding PEEK vs. PEKK, and now PAEK, as well as in-situ consolidation — the supply chain for thermoplastic tape composites continues to evolve.

Read More
Sustainability

Plant tour: Middle River Aerostructure Systems, Baltimore, Md., U.S.

The historic Martin Aircraft factory is advancing digitized automation for more sustainable production of composite aerostructures.

Read More
Trends

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More

Read Next

Aerospace

Boom Supersonic advances flight preparations for composite XB-1 demonstrator

Since its rollout in 2020, the supersonic demonstrator has claimed several achievements, including a recent experimental airworthiness certificate and authorization for test pilot flights, further validating Overture’s development.

Read More
Hydrogen Storage

Hypersonix receives CMC scramjet manufacturing demonstrator

HTCMC component demonstrates manufacturing of future Spartan scramjet engine required for reusable hypersonic vehicles capable of up to Mach 12 flight. 

Read More
Aerospace

Stratolaunch completes separation test of Talon-A hypersonic vehicle

Stratolaunch takes one step closer to hypersonic flight with the demo of a clean and safe separation of its Talon-A vehicle from the Roc aircraft platform.

Read More
Composites One