Composites One
Published

NASA to build biggest composite rocket parts ever made

The robotic system is part of the Composites Technology Center at NASA’s Marshall Space Flight Center in Huntsville, AL.

Share

One of the largest composites manufacturing robots created in America will help NASA build the biggest, lightweight composite parts ever made for space vehicles. The robot resides at NASA's Marshall Space Flight Center in Huntsville.

“Marshall has been investing in composites for a long time,” said Preston Jones, deputy director of Marshall’s Engineering Directorate. “This addition to Marshall’s Composites Technology Center provides modern technology to develop low-cost and high-speed manufacturing processes for making large composite rocket structures. We will build and test these structures to determine if they are a good fit for space vehicles that will carry humans on exploration missions to Mars and other places.”

NASA’s new Space Launch System required plenty of different materials. Lightweight composites have the potential to increase the amount of payload that can be carried by a rocket along with lowering its total production cost. NASA is conducting composites manufacturing technology development and demonstration projects to determine whether composites can be part of the evolved Space Launch System and other exploration spacecraft, such as landers, rovers and habitats.

“The robot will build structures larger than 8 meters, or 26 feet, in diameter, some of the largest composite structures ever constructed for space vehicles, “said Justin Jackson, the Marshall materials engineer who installed and checked out the robot and who helped build and test one of the largest composite rocket fuel tanks ever made. “Composite manufacturing has advanced tremendously in the last few years, and NASA is using this industrial automated fiber placement tool in new ways to advance space exploration. Marshall's investment in this robot will help mature composites manufacturing technology that may lead to more affordable space vehicles."

The robot is mounted on a 40-foot-long track in Marshall’s Composites Technology Center that is part of NASA’s National Center for Advanced Manufacturing. This center already has support infrastructure necessary for composite manufacturing: large autoclaves, curing chambers, test facilities and digital analysis systems.

To make large composite structures, the robot travels on a track, and a head at the end of its 21-foot robot arm articulates in multiple directions. The head can hold up to 16 spools of carbon fibers that look like pieces of tape and are as thin as human hairs. The robot places the fibers onto a tooling surface in precise patterns to form different large structures of varying shapes and sizes. In what looks like an elaborate dance, according to NASA, the tooling surface holds the piece on a rotisserie-like system on a parallel track next to the robot. The robot head can be changed for different projects, which makes the system flexible and usable for various types of manufacturing.

The first project that the robot will tackle is making large composite structures for a Technology Demonstration Mission (TDM) program managed by Marshall for the Space Technology Mission Directorate. For the project, engineers will design, build, test and address flight certification of large composite structures similar to those that might be infused into upgrades for an evolved Space Launch System.

The large structures built by the robot will be tested in nearby Marshall structural test stands where spaceflight conditions can be simulated.

"Composite materials are used across NASA projects for everything from aircraft to human space vehicles to planetary probes," said Larry Pelham, a Marshall composites expert who is leading manufacturing operations with the robot.  “Robotic systems allow NASA to support a variety of research and development from low technology readiness levels to high technology readiness levels where structures are ready for flight tests."

NASA is a partner in the National/Interagency Advanced Manufacturing Initiative and will share its data with American companies to open up the marketplace for increased use of composites across a number of industries.

Park Aerospace Corp.
Fire Retardant Epoxies
Wickert Hydraulic Presses
Ad showing Janicki CNC Mill machining part in tool
Nanoparticles filled epoxy adhesives
Composites One
Vacuum and Controlled Atmosphere furnaces
IRIS Ai-enabled Camera
CIJECT machines and monitoring systems
Alpha’s Premier ESR®
Visual of lab with a yellow line
CompositesWorld

Related Content

Aerospace

Plant tour: Airbus, Illescas, Spain

Airbus’ Illescas facility, featuring highly automated composites processes for the A350 lower wing cover and one-piece Section 19 fuselage barrels, works toward production ramp-ups and next-generation aircraft.

Read More
Autoclave

Industrial composite autoclaves feature advanced control, turnkey options

CAMX 2024: Designed and built with safety and durability in mind, Akarmark delivers complete curing autoclave systems for a variety of applications.

Read More
Autoclave

Plant tour: Spirit AeroSystems, Belfast, Northern Ireland, U.K.

Purpose-built facility employs resin transfer infusion (RTI) and assembly technology to manufacture today’s composite A220 wings, and prepares for future new programs and production ramp-ups.

Read More
Autoclave

The state of recycled carbon fiber

As the need for carbon fiber rises, can recycling fill the gap?

Read More

Read Next

CAMX

VIDEO: High-rate composites production for aerospace

Westlake Epoxy’s process on display at CAMX 2024 reduces cycle time from hours to just 15 minutes.

Read More
Design/Simulation

Modeling and characterization of crushable composite structures

How the predictive tool “CZone” is applied to simulate the axial crushing response of composites, providing valuable insights into their use for motorsport applications.

Read More
Application

CFRP planing head: 50% less mass, 1.5 times faster rotation

Novel, modular design minimizes weight for high-precision cutting tools with faster production speeds.  

Read More
Composites One