RUAG Space to supply composite payload fairings for H3 launch vehicle
The contract includes manufacturing of composite payload fairings and payload supporting structures for the H3 launch vehicle by Mitsubishi Heavy Industries.
RUAG Space (Decatur, Ala., U.S.; Bern, Switzerland; renamed to Beyond Gravity) and Mitsubishi Heavy Industries (MHI, Tokyo, Japan) signed a contract for launch vehicle structures during the 35th National Space Symposium in Colorado Springs, Colo., U.S. on April 9.
The contract includes manufacturing of composite payload fairings and payload supporting structures for the H3 launch vehicle by Mitsubishi Heavy Industries, to be used for three resupply missions to the International Space Station.
The H3 is the new Japanese flagship launch vehicle, which is being developed by the Japan Aerospace Exploration Agency (JAXA, Tokyo, Japan) and MHI to succeed the H-IIA and H-IIB rockets. The rocket will be 63 meters high with a diameter of 5.2 meters. RUAG Space composite payload fairings and supporting structures are planned to be used on three resupply missions to the International Space Station, which will be done by the HTV-X cargo spacecraft, with a first flight expected in in the Japanese Fiscal Year 2021. The HTV-X is a planned successor to the HTV Transport Vehicle, which has been used for resupplying the International Space Station since 2009.
RUAG offers several sizes of payload fairings, from a diameter of 0.7m for small launch vehicles up to 5.4m fairings. RUAG Space also develops and produces interstage adapters and other payload supporting structures. All of these are built in composite technology based on aluminium honeycomb cores with with carbon fiber reinforced plastic (CFR) face sheets, providing a combination of high stiffness and low mass.
Related Content
-
Infinite Composites: Type V tanks for space, hydrogen, automotive and more
After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.
-
ASCEND program update: Designing next-gen, high-rate auto and aerospace composites
GKN Aerospace, McLaren Automotive and U.K.-based partners share goals and progress aiming at high-rate, Industry 4.0-enabled, sustainable materials and processes.
-
Next-generation airship design enabled by modern composites
LTA Research’s proof-of-concept Pathfinder 1 modernizes a fully rigid airship design with a largely carbon fiber composite frame. R&D has already begun on higher volume, more automated manufacturing for the future.