Airtech
Published

University of South Alabama, MHP engage in research partnership for plastic composite material 

ZT-CFRP, enriched with specifically oriented nanoparticles and reinforced with carbon fibers, shows considerable potential when compared to conventional CFRPs. 

Share

Dr. Sebastian Kirmse (left) and Tobias Hoffmeister (right).

Dr. Sebastian Kirmse (left), involved in the composite material’s research, and Tobias Hoffmeister (right), president and CEO of MHP Americas Inc. Photo Credit: MHP

Professor Kuang-Ting Hsiao's group at the University of South Alabama (Atlanta) have recently developed ZT-CFRP, an innovative plastic composite enriched with nanoparticles and reinforced with carbon fibers which was originally supported by NASA. Funded by the U.S. National Science Foundation (NSF), the university has set up a research partnership in order to fully exploit the potential offered by the advanced composite material and to ensure that ZT-CFRP can be brought to a wider market swiftly. 

In addition to the University of South Alabama, five companies from a range of sectors have been involved in the partnership, including MHP (Atlanta, Ga., U.S.), Porsche Motorsports (Calif., U.S.), UST Mamiya (Fort Worth, Texas, U.S.), Hexcel Corp. (Stamford, Conn., U.S.) and Toray Composite Materials America (Tacoma, Wash., U.S.). MHP will reportedly play a key role in this collaboration by working closely with the university to support the design of a roll-to-roll production process for ZT-CFRP, which will enable large quantities of the material to be produced at low cost. The project aims to bring ZT-CFRP to market by 2024.

“Our colleague, Dr. Sebastian Kirmse, wrote his dissertation at the University of South Alabama and, during this time, was involved in the research for this new, exciting composite,” explains Tobias Hoffmeister, president and CEO of MHP Americas Inc. “When Sebastian joined MHP in early 2020, he informed us about the new technology and got us involved. We were all convinced that the composite material had considerable potential, right from the outset.”

The plastic composite, which is enriched with specifically oriented nanoparticles and reinforced with carbon fibers, is said to have a number of properties that make it stand out from other composite materials in this group. Carbon nanofibers are threaded between the conventional carbon fibers in a zigzag formation, producing a fabric in which the mechanical, electrical and thermal loads are distributed in all directions within the composite, significantly increasing the material's conductivity (especially orthogonal to the fiber direction). The university notes that this means that ZT-CFRP is not only lighter than aluminum and tougher than steel it is also significantly less vulnerable to mechanical forces, such as impact damage, than conventional carbon fiber-reinforced plastics (CFRPs).

ZT-CFRP will be available both in the form of a prepreg roll and as a thin resin film that can be used to optimize traditional prepreg materials or to adhesively join two materials with improved mechanical, thermal and electrical connection and durability.

ZT-CFRP is also said to open up a wide range of potential applications, from automotive, to space, to sports like golf. “With cars, for example, we are constantly trying to guarantee a high level of safety for passengers, while at the same time, striving to reduce weight and thus energy consumption,” explains Dr. Sebastian Kirmse. “ZT-CFRP could replace aluminum as the material of choice for the chassis. This wasn’t possible with conventional carbon fiber-reinforced plastics, especially for parts exposed to increased thermal load.” The new composite could also be used in a similar way in spacecrafts. In addition, golf clubs are expected to become lighter and more powerful with the material. Dr. Sebastian Kirmse further states that, due to its multifunctional properties, the material entails an expanded spectrum of possible applications, which will be explored during the project in collaboration with the partners. 

HyperX Software for Composite Structural Analysis
Smart Tooling
Eliminate Quality Escapes  With LASERVISION AI
Airtech
NewStar Adhesives - Nautical Adhesives
Visual of lab with a yellow line
Keyland Polymer Webinar Coatings on Composite & AM
CompositesWorld
IRIS Ai-enabled Camera
Airtech
CIJECT machines and monitoring systems
HEATCON Composite Systems

Related Content

Aerospace

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Aerospace

Plant tour: Albany Engineered Composites, Rochester, N.H., U.S.

Efficient, high-quality, well-controlled composites manufacturing at volume is the mantra for this 3D weaving specialist.

Read More
Pressure Vessels

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More
Hydrogen Storage

TU Munich develops cuboidal conformable tanks using carbon fiber composites for increased hydrogen storage

Flat tank enabling standard platform for BEV and FCEV uses thermoplastic and thermoset composites, overwrapped skeleton design in pursuit of 25% more H2 storage.

Read More

Read Next

Aerospace

VIDEO: High-rate composites production for aerospace

Westlake Epoxy’s process on display at CAMX 2024 reduces cycle time from hours to just 15 minutes.

Read More
Application

CFRP planing head: 50% less mass, 1.5 times faster rotation

Novel, modular design minimizes weight for high-precision cutting tools with faster production speeds.  

Read More
Design/Simulation

Modeling and characterization of crushable composite structures

How the predictive tool “CZone” is applied to simulate the axial crushing response of composites, providing valuable insights into their use for motorsport applications.

Read More
Airtech International Inc.