High-temperature, fire-resistant materials bridge CFRP and CMC gap
CAMX 2024: Pyromeral Technology features its Pyromeral family of fiber-reinforced materials — PyroKarb, PyroSic and PyroXide — with novel ceramic matrices achieving high-temperature capabilities.
For 40 years, Pyromeral Technology (Barbery, France and Sunnyvale, Calif., U.S.) has been developing innovative materials and composite parts to meet the challenges of high-temperature and fire-resistant applications. The company highlights these capabilities through the Pyromeral family of materials.
Pyromeral composite materials, marketed under PyroKarb, PyroSic and PyroXide, feature proprietary ceramic matrices that are derived from alumino-silicate-based geopolymeric systems. According to the company, they differ significantly from organic polymers and conventional ceramic matrices in that they can be processed with a low-temperature autoclave cure and one free-standing post-cure. This not only reduces lead times and complexity to produce high-temperature composite parts, but also improves affordability.
These materials are meant to bridge the thermal, structural and cost gap between carbon fiber-reinforced polymers (CFRPs) and traditional traditional ceramic matrix composites (CMC). They bring a lightweight and convenient alternative to metals and other materials for heat shields, ducts and other components exposed to sustained temperatures from 177°C to 1000°C and beyond for short-term exposure.
PyroKarb, presented to industry in 2000, features a high-modulus carbon fiber fabric with a glass-ceramic matrix, and a silicon-carbide fabric with the same matrix for PyroSic. Both materials are said to offer performance well beyond the capability of polyimides, to 800°C and higher. PyroKarb saves 40% weight compared to aluminum and PyroSic saves 60% compared to titanium.
PyroXide was introduced in 2013 using an aluminum-oxide fabric with a novel oxide-ceramic matrix, pushing temperature capability to 1000°C and beyond, with 70% weight savings compared to Inconel.
Today, Pyromeral materials are used across a wide array of industries ranging from heat shields on engines, supersonic and hypersonic fins and external skins in aerospace and defense, and battery thermal runaway protection and containment in the advanced air mobility market.
Pyromeral Technology held the grand opening of its standalone U.S. headquarters on May 23, 2024, in Sunnyvale, California. The ITAR-registered facility is set to offer full material prepreg production and part fabrication capabilities, bringing the benefits of its thermal management solutions to a wider range of customers and applications.
Related Content
-
Black Hawk program receives improved turbine engine with CMC
GE Aerospace T901 flight test engines will replace GE T700 for the UH-60M Black Hawk helicopter, using additive manufacturing and ceramic matrix composites (CMC) for 1,000 shaft horsepower increase.
-
MATECH C/ZrOC composite is deployed in hypersonic aeroshells
Ultra high-temperature insulating CMC targets hypersonics, space heat shields and other demanding applications, tested up to 2760°C under extreme stagnation pressures.
-
General Atomics wins DOE contract to develop silicon carbide CMC for fusion power plants
GA-EMS will leverage experience with SiGA SiC/SiC cladding for nuclear fuel rods to develop new SiC composite foam and other materials for fission and magnetic fusion programs.