Published

Digital chemistry platform leverages physics-based modeling for enhanced workflow

CAMX 2024: Schrödinger introduces a digital chemistry software platform, designed to enable researchers to tackle materials challenges across diverse polymer resin and carbon fiber applications.

Share

Desktop with digital chemistry software platform on its screen.

Source | Schrödinger

Schrödinger (New York, N.Y., U.S.) introduces a digital chemistry software platform enabling the quick and cost-effective discovery of high-quality, novel molecules for materials applications. With Schrödinger’s digital chemistry platform, users can access advanced computational solutions leveraging physics-based modeling, machine learning and enterprise informatics to understand and predict product performance of polymers and composites at molecular and atomic scales. These solutions can enable researchers to tackle materials challenges across diverse polymer resin and carbon fiber applications.

Composite industry tailored workflows, tutorials and online courses are designed to enable companies to integrate digital chemistry into their existing workforce with minimal time and effort. Customized support is provided by Schrödinger’s polymer, composite and surface chemistry scientists.

Schrödinger’s software helps identify high-performance composites by:

  • Modeling moisture aging and morphological stability in polymer composites
  • Predicting glass transition, thermal stability and thermal expansion with custom resin formulations
  • Predicting resin sizing compatibility for natural fibers
  • Aiding in root cause analysis of materials-related issues.

At its booth, Schrödinger is providing a live demo on composite modeling. In addition, a presentation, “A multi-scale framework to determine effects of environmental conditions on composite parts using molecular dynamics and finite-element methods” by David Nicholson, principal scientist at Schrödinger, is available to visitors. It takes place on Tuesday, Sept. 10 from 2:30 – 2:55 p.m.

Schrodinger will be exhibiting new technology at CAMX 2024 in San Diego, CA this September.
Plan to meet up with their team or get registered here!

SEPT. 9 - 12

2024

SAN DIEGO CONVENTION CENTER

San Diego, CA

theCAMX.org

September 9 - 12, 2024

San Diego Convention Center in San Diego, CA

Presented By theCAMX.org

Related Content

Related Content

Epoxies

Composites enable epic interior for Museum of the Future

For this one-of-a-kind lobby, AFI pioneered digital, reconfigurable molds to achieve organic-shaped, multifunctional panels and stairwell cladding.

Read More
Thermoplastics

Jeep all-composite roof receivers achieve steel performance at low mass

Ultrashort carbon fiber/PPA replaces steel on rooftop brackets to hold Jeep soft tops, hardtops.

Read More

Thermoset-thermoplastic joining, natural fibers enable sustainability-focused brake cover

Award-winning motorcycle brake disc cover showcases potential for KTM Technologies’ Conexus joining technology and flax fiber composites.

Read More
Bonding/Welding

Thermoplastic composites welding: Process control, certification, crack arresters and surface prep

More widespread use of welded composite structures within a decade? Yes, but further developments are needed.

Read More

Read Next

Design/Simulation

CoreTech, Xnovo bring 3D imaging to Moldex3D molding software

Moldex3D users will now be able to conduct accurate 3D fiber orientation simulations using calibrated fiber parameters.

Read More

COMSOL releases version 6.0 for multiphysics simulation software

COMSOL Multiphysics introduces platform feature for model management, adds module for uncertainty quantification analysis and includes important updates and performance enhancements, all with boosted productivity in mind.

Read More
Aerospace

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More