Ready-to-Ship Composites

Share

dry carbon fiber braided poles for marine applications
Photo Credit, all images: Shellback Canvas LLC

Nanette Hultgren, owner of Shellback Canvas LLC (Palmetto, Fla., U.S.), has been in the marine fabrication business for 33 years, developing and building products such as canvas awnings for fishing boats and, more recently, awning support poles. One challenge in this business, she says, was that for years, the state-of-the-art aluminum and PVC support poles on the market were not strong enough to withstand the high winds on a boat during use. Stainless steel poles, though stronger, were too heavy and stiff, and not easily storable. A few carbon fiber options were available, and showed potential to meet both the requirements for stiffness and light weight, but they were made from prepreg fabrics that Hultgren says were prohibitively expensive.

About 10 years ago, Hultgren decided to try to develop her own carbon fiber composite poles for use with her canvas awnings. The goal was to develop a cost-effective solution that met the specific requirements for her two-piece breakdown awning poles.

After some market searching and trial and error, Hultgren decided to try braided carbon fiber sleeves from A&P Technology (Cincinnati, Ohio, U.S.) infused with epoxy. To achieve the desired thickness and stiffness, two braided sleeves form the inner and outer layers, with a unidirectional (UD) carbon fiber sleeve layer in the middle. First, she tried a wet hand layup, but the combination of the three material layers was too thick for the resin to properly infuse. Next, she enlisted the help of a composites professional, who developed a two-part mold out of fiberglass on which to vacuum infuse the parts. However, the cylindrical shape of the poles proved too complex for infusion, and Hultgren realized that some type of pressure would be needed to properly infuse the braid with resin.

Ultimately, Hultgren designed a two-part aluminum mold with clamps for pressure. Her process uses a patented thin-wall plastic tube as a left-in mandrel, with a removable support tube to maintain shape. A patented mold release liner was also designed to prevent the liquid epoxy from contacting the mold directly and to help draw the epoxy over the tube before pressure is applied. 

To make the final product, two poles are manufactured and then connected via a patented carbon fiber composite socket, forming a breakdown point for easy stowage.

carbon fiber braided poles to hold boat awnings

In the final, patented process, the mold release liner is inserted into the mold, followed by the braided sleeves and mandrels. Liquid epoxy is poured into the mold, making sure the entire pole is covered. Then pressure and heat are added.

The resulting rods exhibited the light weight, durability and flexibility needed. Sold and marketed as Blackstick for the past four years, Shellback Canvas LLC sells a carbon fiber socket breakdown pole for rod holder shades and rocket launcher shades for boats.

Hultgren notes that now, there are several carbon fiber prepreg pole options on the market. “Prepreg is easier to source and manufacture for those new to composites, but braid outperforms prepreg rods in this application,” she says. “They are tougher, more flexible, with no delamination.”

Shellback Canvas LLC now solely produces Blacksticks to keep up with growing demand for the product, Hultgren says. Ultimately, she says she could see her process and liner being used for other cylindrical part applications, in oil and gas or other markets. “Prepreg and filament winding are the state of the art when it comes to rods and tubes, and they have their advantages. But I think braid has a lot of potential that hasn’t been seen yet.”

Custom Quantity Composite Repair Materials
BARRDAY PREPREG
Composites One
Harper International Carbon Fiber
Toray Advanced Composites
Adhesives for Composite Materials
HEATCON Composite Systems
CompositesWorld
Composites product design
Advert for lightweight carrier veils used in aero
Airtech
NewStar Adhesives - Nautical Adhesives

Related Content

Application

Recycling hydrogen tanks to produce automotive structural components

Voith Composites and partners develop recycling solutions for hydrogen storage tanks and manufacturing methods to produce automotive parts from the recycled materials.

Read More
Application

Composite wrap system combats corrosion in industrial tank repair

A fiberglass and carbon fiber composite wrap system enabled an Australian nickel mine to quickly repair a stainless steel ammonium sulphate feed tank and protect against future corrosion.  

Read More
Pressure Vessels

Vestas implements composites 3D printing to increase efficiency for blade alignment tools

A Markforged digital repository and multi-material 3D printers enable faster, more accurate and less costly manufacture of a variety of tools and blade components across Vestas sites.

Read More
Consumer

Lighter, stronger, faster bionic hand aided by composites design

Psyonic’s touch-sensing prosthetic hand leverages bionic technology, 3D printing and a carbon fiber composite exterior for light weight, high strength and high-tech functionality.

Read More

Read Next

Carbon Fibers

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Past, Present and Future

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
Additive Manufacturing

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Composites One