Airtech
Published

Taking the hit without added weight

High-modulus polypropylene (HMPP) fiber hybrids graduate from tennis to ... tornados!

Share

Although high stiffness and strength at very low weight have made carbon fiber (CF) a mainstay in high-performance sporting goods, athletes now also desire vibration damping, which improves athlete control and reduces fatigue. This trend toward a better “feel” — a quality CF cannot provide on its own — created a niche for Innegra, the tradename for high-modulus polypropylene (HMPP) fiber produced by Innegra Technologies (Greenville, SC, US). An early adopter was HEAD Sport (Kennelbach, Austria). Tennis players valued the energy absorption HMPP added to HEAD’s carbon fiber racquets: HEAD has measured a 17% reduction in vibration in its hybrid HMPP/CF racquets, which are now a standard product line, reports Innegra Technologies’ business development director Jen Hanna. Surfers appreciated HMPP’s ability to keep their fiberglass boards from breaking. Similarly, HMPP in Adventure Technology’s (Greenville, SC, US) whitewater kayak paddle shafts significantly reduced catastrophic failure and increased abrasion resistance by 200% in the paddle’s glass fiber blade.

“What we’re seeing,” Hanna emphasizes, “is a real push for increased toughness, durability and vibration damping, but without sacrificing light weight.”

Innegra also iced a spot in the National Hockey League (NHL). A hybrid HMPP/CF fabric and a special resin developed for Bauer (Exeter, NH, US and Mississauga, ON, Canada) was used in Bauer goalie sticks for years. NHL players suggested applying the hybrid fabric in goalie masks, which must withstand multiple hits per game from 100-mph pucks. HMPP reportedly dissipates energy very quickly, with a sonic velocity — the rate (m/sec) at which energy is dispersed in ballistics testing — near that of more expensive aramid fiber. “The players say they don’t get the ringing in their ears that they do with the normal masks,” says Hanna. “You could build up more toughness and durability with more CF layers,” concedes Hanna, “or with plastics like nylon, but this also means adding weight.” She says HMPP offers a higher elongation-to-break than CF while offering a higher modulus than either standard PP, polyethylene (PE), or polyamide (nylon). And although HMPP is hydrophobic, like ultrahigh-molecular-weight PE (UHMWPE) fiber, it has enough surface roughness to enable good bonding, which the UHMWPE’s slick surface makes difficult.

“Innegra really excels in applications that have to take a lot of abuse,” says Hanna. That was not lost
on Tornado Pod (Dallas, TX, US) founder Wes Kouba. Seeing what Innegra hybrids had achieved in the sporting goods world, he sought to use the fiber in
his cost-effective, compact alternative to traditional storm shelters. His TornadoPod uses a submerged 1.5m-diameter PE unibody, anchored to the ground with poured concrete, to accommodate up to six adults, and a slidable hybrid glass/HMPP fiber composite dome that extends almost 1m above ground to permit easy entry and exit. The dome has been tested to Federal Emergency Management Agency (FEMA, Washington, DC, US) standards, for which certification testing includes four 100-mph impacts from wooden two-by-fours fired from a cannon at close range. “The two-by-fours just bounced off the dome,” recalls Innegra Technology chief composites engineer Russ Emanis. 

View a video of the TornadoPod testing online: short.compositesworld.com/tornadopod 

Release agents and process chemical specialties
Composites product design
Carbon Fiber 2024
MITO® Material Solutions
HEATCON Composite Systems
CAMX 2024
Advert for lightweight carrier veils used in aero
NewStar Adhesives - Nautical Adhesives
Airtech
CompositesWorld
CompositesWorld

Related Content

Consumer

Mubea to collaborate on production of carbon fiber exoskeletons

Automotive supplier Mubea has entered into an agreement with robotic exoskeleton producer German Bionic on production of Cray X carbon fiber composite power suits.

Read More
Aerospace

Plant tour: Arris Composites, Berkeley, Calif., U.S.

The creator of Additive Molding is leveraging automation and thermoplastics to provide high-volume, high-quality, sustainable composites manufacturing services.

Read More
Electronics

Carbon Mobile, SABIC to develop, deploy advanced carbon fiber in connected devices

Collaboration aims to deliver the next generation of thinner, lighter, stronger and more sustainable composite materials used in consumer electronics and automotive industries.  

Read More
Consumer

Running shoe insoles get a lift with thermoplastic fiberglass tapes

FlexSpring insoles take advantage of unidirectional, continuous fiberglass and thermoplastics to enable next-level performance for the everyday runner.

Read More

Read Next

Past, Present and Future

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
ATL/AFP

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Carbon Fibers

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Composites product designs