Composites One
Published

Adaptive composite elements for building facades exhibited at JEC World 2023

University of Stuttgart institutes use carbon and glass fiber composites, robotic fabrication, biomimetic design and digial twin/control to demonstrate adaptive facade elements for future buildings.

Share

Based on the ITECH Research Demonstrator (top left), The University of Stuttgart Institute for Textile and Fiber Technologies (ITFT) will exhibit its “Adaptive FRP elements for facade shading” demonstrator (bottom right) in the Building & Industry Innovation Planet at JEC World 2023. Photo Credit: University of Stuttgart 

The University of Stuttgart’s (Stuttgart, Germany) research demonstrator “Adaptive FRP elements for facade shading” has been selected as an interactive exhibit in the Building & Industry Innovation Planet at JEC World 2023 (April 25-27, Paris, France). Movement (bending of the flap up to 90°) is activated by cushions integrated asymmetrically into the fiber-reinforced polymer (FRP) composite laminate. Visitors at JEC will be able to pressurize the cushions in the demonstrator themselves via a foot pump.

The ITECH Research Demonstrator showcased adaptive facade elements using carbon and glass fiber-reinforced composites, robotic tape laying, biomimetic design, digital kinematic analyses and computer control with a digital twin to showcase future building technology. Photo Credit: University of Stuttgart ITECH Research Demonstrator

This exhibit at JEC World 2023 is derived from the ITECH Research Demonstrator developed in 2018-19 by the Institute of Building Structures and Structural Design (ITKE) in collaboration with the Institute for Textile and Fiber Technologies (ITFT) and the Institute for Computational Design and Construction (ICD). That demonstrator comprises two folding components — one 1.7 x 3.0 meters tall, the other 1.7 x 2.5 meters tall — with a total weight of 23 kilograms per element. The laminates for the two elements were manufactured by robotic tape-laying of up to eight simultaneous tapes made from carbon and glass fiber-reinforced polyamide (PA). 

With a maximum actuation pressure of 0.8 bar in the horizontal hinges and 0.4 bar in the vertical hinges, a folding angle of nearly 80° can be achieved in the two composite components. This movement can be initiated via two different means.

ITECH Research Demonstrator adaptive composite facade elements

Two different means of interaction. Conductive carbon fiber in the lamainates enable parts to be touch sensitive or movement can be controlled by a mobile and web-based interface. Photo Credit: University of Stuttgart

A user can directly interact with the adaptive FRP elements through the conductivity of the carbon fibers in the composite laminates, enabling parts of the pavilion to be touch sensitive. When a user taps the structure in locally defined areas, opening and closing of the adaptive composite elements can be triggered.

A second mode of interaction is enabled through a custom mobile and web-based user control interface, allowing a user to activate and control the motion of the demonstrator via smart phone or tablet PC. The interface simultaneously visualizes a real-time 3D model digital twin representing the current folded or unfolded state of the composite structures.

ITECH Research Demonstrator 2018-19 from itke on Vimeo.

Read more about this project.

The ITECH Research Demonstrator and its associated exhibit at JEC World 2023 serve as a proof-of-concept, representing the possibilities of achieving adaptive architectural structures composed of FRP composite laminates with compliant hinge zones and integrated pneumatic actuators. These demonstrators investigate the possibilities of direct interaction between the built environment and its inhabitants through active control and real-time communication.

They also demonstrate the power of biomimetic design coupled with the integration of computational design, simulation and composite fabrication processes while highlighting the innovation potential of an interdisciplinary research and development environment.

BARRDAY PREPREG
Custom Quantity Composite Repair Materials
Adhesives for Composite Materials
Composites One
Toray Advanced Composites
Harper International Carbon Fiber
MITO® Material Solutions
Advert for lightweight carrier veils used in aero
CompositesWorld
Release agents and process chemical specialties
NewStar Adhesives - Nautical Adhesives
Composites product design

Related Content

Sponsored

Fiberglass Cutting Operation at Hubbell’s Lenoir City Plant Moves to Automation

Automating fabric cutting operations saves Hubbell Lenoir City money and can produce composite products faster at less cost to support infrastructure expansion.

Read More
Trends

Digitizing tools for composites production

Alpex Technologies focuses on industrialization, process and part intelligence and biocomposites in its next generation of tooling systems.

Read More
Pressure Vessels

Evident wind blade inspection system automates nondestructive ultrasonic testing

An autonomous, cobot-mounted inspection system combines Industry 4.0 with established ultrasonic technology to rapidly provide repeatable, accurate data and improve overall efficiency.

Read More
Hydrogen Storage

Toray announces growth, investment in carbon fiber composite materials

As part of its 2023-2025 management strategy, Toray projects 42% growth for pressure vessels, 30% growth in carbon fiber composite materials revenue and a doubling of capital investment.  

Read More

Read Next

Carbon Fibers

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Aerospace

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
Defense

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Composites One