Aviation research program kicks off for continuous complex composite profiles
InPro project combines blow molding technology with Continuous Compression Molding (CCM) process for efficient, sustainable continuous composite profile production.
Photo Credit: herone GmbH
Funded by the German Federal Ministry for Economic Affairs and Energy (BmWi) as part of its civil aviation research program, herone GmbH (Dresden, Germany), a spin-off from the Technical University (TU) Dresden, announces the kick-off of its three-year InPro research project for the continuous production of thermoplastic composite hollow profile structures with the help of an interval hot press technology, the Continuous Blow Molding (CBM) process. The project will extend herone’s discontinuous production capabilities with partners HPF GmbH & Co. KG (Saxony, Germany) and the Institute for Lightweight Engineering and Polymer Technology (ILK) at TU Dresden.
According to herone, the CBM process serves as the project’s basis. The patented, semi-continuous approach combines blow molding technology with a Continuous Compression Molding (CCM) process to enable the continuous production of composite hollow profiles. This process, says herone, is said to be especially important in high-stress areas, such as load introduction locations. Further, the process is said to be more efficient and saves on resources, thus lowering environmental impact.
Within the research project, the CBM technology to process high-performance thermoplastics (such as PEEK polymers, PPS or PPA) will be further developed and combined with the injection molding technology to allow for additional functionalization of the composite profiles. The company adds that subsequent injection molding step enables the integration of functional elements (e.g. gears, levers, sealing surfaces, integral composite threads) into the basic component via form-fitting connections or a combination of form-fitting and cohesive joints. Targeted components include tension-compression struts, drive shafts as well as media-carrying storage systems like liquid hydrogen pipes.
InPro will end in 2023 and is supported by international partners Victrex (Thornton Cleveleys, U.K.) and Boeing (Chicago, Ill., U.S.) for deployment.
Related Content
-
Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures
The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.
-
Jeep all-composite roof receivers achieve steel performance at low mass
Ultrashort carbon fiber/PPA replaces steel on rooftop brackets to hold Jeep soft tops, hardtops.
-
The state of recycled carbon fiber
As the need for carbon fiber rises, can recycling fill the gap?