Ready-to-Ship Composites
Published

Beyond Gravity wins contract for Ariane 6 payload fairings

Extended partnership for the 20-meter-high carbon fiber payload fairing variant manufactured at Beyond Gravity’s Emmen facility builds on decades of composite space component manufacture.

Share

Rendering of the Ariane 6 launch vehicle. Photo Credit: ESA

Beyond Gravity (formerly RUAG Space, Zürich, Switzerland) has won an order to produce the carbon fiber payload fairings for ArianeGroup’s (Les Mureaux, France) new Ariane 6 rocket. The new European launcher replaces Ariane 5, which was successfully launched more than 100 times and has been in service since 1996. 

Beyond Gravity offers two different-sized payload fairing variants that consist of two half-shells that separate once they reach orbit. Accounting for one-third of a launch vehicle’s total length and rising to the height of a six-story building, the 20-meter-high variant (A64) is said to safeguard valuable cargo on its voyage to space. The smaller version is 14 meters high. Both variants have a 5.4-meter diameter, ensuring ample room for a variety of payloads. 

The Ariane 6 payload fairings, which are the A64 variant, are manufactured by Beyond Gravity at its Emmen site in Switzerland. In a semi-automated process, the company manufactures each half-shell in one piece from carbon fiber-reinforced composites that is “cured” in an industrial oven. This reduces costs compared with autoclave-produced half-shells and enables production to move twice as quickly. The resulting payload fairings weigh only 1.8 to 2.6 tons.

Paul Horstink, executive vice president, Beyond Gravity, notes that with the commercial market in mind, the company is also “driving future innovations, such as further shortening lead times or exploring possibilities in reusability to redefine the boundaries of space exploration.”

“Over the years, Beyond Gravity has manufactured more than 250 payload
fairings for the Ariane launcher rockets,” André Wall, CEO of Beyond Gravity, adds, noting their decades of close partnership with ArianeGroup producing payload fairings for all missions since Ariane’s first flight in 1979.

Ariane 6 prototype at Spaceport in Kourou.

Ariane 6 prototype at Spaceport in Kourou, South America. Photo Credit: ESA, CNE and ArianeGroup

Beyond Gravity’s expertise in composite payload fairings has also won it a contract for the United Launch Alliance’s (ULA) Vulcan rockets and the European Vega-C rockets. Another contract, this time from Amazon, was awarded to the company in June 2022 for scalable carbon fiber-reinforced polymer (CFRP) dispenser systems.

“This contract with Beyond Gravity is a new and key step towards a strong Ariane 6 European team” says Stephane Nogatchewsky, EVP head of procurement at ArianeGroup. “While the inaugural flight of Ariane 6 is getting closer and the industrial ramp-up is intensifying, this collaboration is a positive and critical milestone for the future of Ariane 6 operations. Also, unifying European actors is paramount to ensure further industrial robustness, competitiveness and to preserve European autonomous access to space.”

Ariane 6, a program of the European Space Agency (ESA), is a family of launchers designed to offer maximum flexibility to customers in the institutional and commercial markets. Due to its large volume under the payload fairing, Ariane 6 can perform classic single or dual launches as well as complex missions that meet new market requirements, such as launching satellites with electric propulsion or multiple launches of constellation satellites. In addition to composite payload fairings, these launch vehicles sport an upper and lower interface structure that “is reported to be the largest carbon fiber structure for space produced in Europe. The other composite structures include the launch vehicle adapter for the upper stage, and the equipped rocket upper part of each rocket booster,” all of which are delivered under contract by Airbus (Toulouse, France). 

The launcher will be available in two versions, depending on the mission: The Ariane 64 with four boosters can carry more than 12 tons into geostationary transfer orbit (GTO) with a dual launch. The Ariane 62 with two boosters can carry more than 4.5 tons of payload into GTO or seven tons into sun-synchronous orbit (SSO). 

Custom Quantity Composite Repair Materials
Renegade Material Composites
Composites One
PRO-SET: Infusion Epoxies low viscosity post cure
Toray public database prepreg materials
BARRDAY PREPREG
heat resistant adhesives
Harper International Carbon Fiber
Sika Filling & Fairing Compounds Polyester & Epoxy
Composites in New Space Applications
TFP is now James Cropper
Plane in a cloudy sky with Collins Aerospace logo

Related Content

Aerospace

Infinite Composites: Type V tanks for space, hydrogen, automotive and more

After a decade of proving its linerless, weight-saving composite tanks with NASA and more than 30 aerospace companies, this CryoSphere pioneer is scaling for growth in commercial space and sustainable transportation on Earth.

Read More
Natural Fibers

Natural fiber composites: Growing to fit sustainability needs

Led by global and industry-wide sustainability goals, commercial interest in flax and hemp fiber-reinforced composites grows into higher-performance, higher-volume applications.

Read More
Aerospace

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Aerospace

Plant tour: Albany Engineered Composites, Rochester, N.H., U.S.

Efficient, high-quality, well-controlled composites manufacturing at volume is the mantra for this 3D weaving specialist.

Read More

Read Next

Plant Tours

Plant Tour: RUAG Space, Decatur, Alabama, U.S.

Out-of-autoclave composites manufacturing facility comes of age with first U.S.-made composite structures for the Atlas V launcher, and qualification parts for the Vulcan.

Read More
Aerospace

Nanomaterials optimize performance of space-ready carbon fiber composite panels

A recent ESA project led by Adamant Composites aimed to mature nanomaterial-enhanced CFRP for lighter weight, more thermally and electrically conductive materials for manufacturing satellite structures.

Read More
Application

CFRP planing head: 50% less mass, 1.5 times faster rotation

Novel, modular design minimizes weight for high-precision cutting tools with faster production speeds.  

Read More
Composites One