CGTech joins NIAR to support ATLAS research
CGTech's AFP/ATL programming and simulation software will be used to support ATLAS aerospace composites research at the National Institute of Aviation Research.
CGTech (Irvine, Calif., U.S.), the developer of VERICUT CNC simulation, verification and optimization software, joins Wichita State University’s National Institute of Aviation Research (NIAR; Wichita, Kan., U.S.) to participate in the Automated Technologies Laboratory for Advanced Structures (ATLAS). ATLAS investigates the development of manufacturing protocols for automated fiber placement (AFP) and automated tape laying (ATL) for aircraft systems.
The partnership between CGTech and NIAR is intended to combine VERICUT’s programming and simulation capabilities for AFP and ATL with ATLAS’s advanced robotics capabilities, including a thermoplastics-capable Coriolis (Queven, France) robot and an Electroimpact (Mukilteo, Wash., U.S.) AFP robot.
“Working with NIAR will help leverage our expertise in AFP and ATL manufacturing,” says Andre Colvin, CGTech’s composites product manager. “Together with the ATLAS program, we will advance the capabilities of advanced automated composites manufacturing.”
ATLAS provides a facility for manufacturers to research advanced manufacturing concepts using various machines, software and processing options. The university recently received a $2 million grant contract from the U.S. Economic Development Association to develop and demonstrate advanced composite material manufacturing technology. Since 1988, CGTech’s VERICUT software has been the industry standard for simulating CNC machining.
"Partnership with CGTech enables us to develop a multi-disciplinary manufacturing environment and an engineering education program to prepare engineers and educators for the Factory of the Future and to aid the current workforce in seamlessly adapting to advancements in the workplace.,” says Dr. Waruna Seneviratne, director of ATLAS.
Related Content
-
Optimized approach to predict delamination failure in CFRTP structures
ARRK Engineering and Mitsui Chemicals improved delamination prediction accuracy to help optimize absorbed energy/failure load for an overmolded TAFNEX CF/PP UD tape bumper beam.
-
Carbon fiber, bionic design achieve peak performance in race-ready production vehicle
Porsche worked with Action Composites to design and manufacture an innovative carbon fiber safety cage option to lightweight one of its series race vehicles, built in a one-shot compression molding process.
-
Active core molding: A new way to make composite parts
Koridion expandable material is combined with induction-heated molds to make high-quality, complex-shaped parts in minutes with 40% less material and 90% less energy, unlocking new possibilities in design and production.