Ready-to-Ship Composites
Published

UCalgary researchers turn Alberta oilsands bitumen into high-value carbon fibers

University spearheads three projects out of the 12 teams chosen for Phase II of the Carbon Fibre Challenge, with a new target to produce the carbon fibers from bitumen at a lab scale.

Share

Abstract carbon fiber.

Photo Credit: Colourbox

Dr. Md Kibria, an assistant professor for the Department of Chemical and Petroleum Engineering at the Schulich School of Engineering for the University of Calgary (Calgary, Alberta, Canada), is leading one of three projects selected in the Carbon Fibre Challenge (CFGC) Phase II competition conducted by Alberta Innovates (Alberta, Canada) and the Clean Resource Innovation Network (CRIN, Canada). 

The three-phase competition is aimed at accelerating the development of carbon fiber derived from Alberta’s vast supply of oilsands bitumen, a black viscous mixture of hydrocarbons obtained naturally or as a residue from petroleum distillation. Currently, Kibria and his team have been working with asphaltenes, — molecular substances found in crude oil — spinning the gooey substance together into strands finer than a human hair.

“Asphaltenes are commonly known as the ‘bottom of the barrel,’” says Kibria. “It’s the heavy fraction in bitumen which holds great promise to serve as a cheap feedstock for a wide variety of non-combustible, high-value products such as carbon fibers.”

The asphaltenes, says Kibria, are heated up to become a gel of sorts, which a spinner then winds into carbon fibers. The fibers then go through several steps to make them stronger, with some guessing and testing along the way. “We know that it’s feasible to make the fibers. Now the question is: How strong can we make it?” he questions.

Kibria hopes to create high-end carbon fibers that meet the standard for the automotive and airline industries, for which they can be used to create body components, wheels and rims, interior finishes and other products. He calls it a “win-win-win” situation because materials that don’t meet that high standard can still be used for other applications such as carbon fiber-reinforced concrete.

In addition to Dr. Md Kibria, two other Schulich professors, Dr. Simon Park, PhD, and Dr. Joanna Wong, Dr.sc.ETH — both with the Department of Mechanical and Manufacturing Engineering — are spearheading projects that also made it into the final 12 teams of the competition.

“One of the challenges associated with traditional carbon fiber-making is the high energy needed to convert polymer-based precursors to fibers,” Park says. “We are currently investigating new methods to generate carbon fibers by minimizing the energy usage through both chemical and electromagnetic treatments.”

In particular, his team is using both melt spinning and electrospinning processes to generate nano-scale and micro-scale fibers.

Wong, meanwhile, says her team’s approach “involves studying the chemical characteristics or particular fractions of different asphaltene samples. We are studying how their chemistries affect the rheology of the melts which, in turn, affects the quality of fibers that can be made.”

Phase II of the Carbon Fibre Challenge moves us closer to realizing the potential of Bitumen Beyond Combustion,” says Alberta Innovates CEO Laura Kilcrease. “Alberta’s vast reserves of bitumen are the building blocks to create new low-carbon opportunities throughout the province.”

In total, the 12 teams that moved on in the competition received a share of $5.27 million to produce the carbon fibers at a lab scale and develop a process with line of sight to a demonstration plant that can be commercially scaled.

“Our target isn’t just to make a product,” says Kibria, who received $500,000 in funding for Phase II. “We want to make a carbon fiber that the end users need for different applications.”

Park obtained $485,000 in funding and Wong secured $217,000 for the second phase of the competition, which is expected to wrap up in December 2022.

Phase III, which will see the finalists demonstrate how they can manufacture the fibers in a way to enable commercial investment, is expected to run from January 2023 to December 2024. View a list of the 12 best projects selected by Alberta Innovates and a committee of experts here.

Toray Advanced Composites
BARRDAY PREPREG
Harper International Carbon Fiber
Custom Quantity Composite Repair Materials
Composites One
Adhesives for Composite Materials
MITO® Material Solutions
Composites product design
Advert for lightweight carrier veils used in aero
NewStar Adhesives - Nautical Adhesives
CompositesWorld
CAMX 2024

Related Content

Resins

Composite rebar for future infrastructure

GFRP eliminates risk of corrosion and increases durability fourfold for reinforced concrete that meets future demands as traffic, urbanization and extreme weather increase.

Read More
IACMI

The state of recycled carbon fiber

As the need for carbon fiber rises, can recycling fill the gap?

Read More

Price, performance, protection: EV battery enclosures, Part 1

Composite technologies are growing in use as suppliers continue efforts to meet more demanding requirements for EV battery enclosures.  

Read More
Pressure Vessels

Recycling end-of-life composite parts: New methods, markets

From infrastructure solutions to consumer products, Polish recycler Anmet and Netherlands-based researchers are developing new methods for repurposing wind turbine blades and other composite parts.

Read More

Read Next

Carbon Fibers

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Fastening / Finishing

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Aerospace

The next-generation single-aisle: Implications for the composites industry

While the world continues to wait for new single-aisle program announcements from Airbus and Boeing, it’s clear composites will play a role in their fabrication. But in what ways, and what capacity?

Read More
Ready-to-Ship Composites