Share
The case for recycled carbon fiber is a complicated one. The industry is built on the hope of solving problems — namely, the desire to keep carbon fiber waste out of landfills and to fill a potential gap between carbon fiber supply and demand. It is commonly estimated that around 30% of produced carbon fiber ends up as waste. Meanwhile, as valuable material ends up in landfills, most analysts agree that annual demand for the material could surpass current annual production capacity within the next few years. The average estimated global carbon fiber demand is around 65,000-85,000 metric tonnes per year, with a global nameplate capacity (which is more than actual capacity) of around 150,000 metric tonnes, according to estimates presented by Brett Schneider, president, global fibers, Hexcel (Stamford, Conn., U.S.) and Dan Pichler, managing director of CarbConsult GmbH (Hofheim am Taunus, Germany) at the December 2018 Carbon Fiber conference. As reported by CW contributor Amanda Jacob in March, some analysts estimate that carbon fiber demand could exceed supply by about 24,000 metric tonnes by 2022. (see “Building confidence in recycled carbon fiber.”)
And while commercial suppliers of recycled carbon fiber (rCF) point to reclaimed and repurposed material as a potential solution to this supply and demand gap, the rCF industry has its own challenges. While the technology to recycle carbon fiber composites has existed for several years and is capable of yielding a product with mechanical properties very near that of virgin material, the composites recycling industry is relatively young and is still in the early stages of developing markets for the materials it produces from recyclate. As confidence in the quality of fiber being produced by recyclers increases, questions about cost and availability have come to the forefront. Perhaps the largest challenge for the industry is the concern over supply chain security.
“The technologies are actually there, and they’ve existed for quite a while, but the supply chain just hasn’t been vetted,” says Andrew Maxey, CEO of Vartega (Golden, Colo., U.S.). “Without the right pieces coming together you can have the best technology in the world, but you’re not going to have material to recycle and you’re not going to have any products to put it in.”
Commercial suppliers often look to the aerospace industry as a source of production scrap and end-of-life material to be used as recyclate, yet while the amount of waste created by the aerospace industry is large in terms of what is going to the landfill, many OEMs and fabricators have been reluctant to rely on it as a steady supply source for a high-volume product line.
On the other hand, some progress is being made. In December 2018, Boeing announced it will supply carbon fiber recycling specialist ELG Carbon Fibre Ltd. (Coseley, U.K.) with cured and uncured carbon fiber waste to be recycled for use in secondary products for other composites manufacturing applications. The agreement is the first formal material supply relationship between a carbon fiber recycler and a major aircraft OEM and seems to be a good portent for the industry.
Related Content
PEEK vs. PEKK vs. PAEK and continuous compression molding
Suppliers of thermoplastics and carbon fiber chime in regarding PEEK vs. PEKK, and now PAEK, as well as in-situ consolidation — the supply chain for thermoplastic tape composites continues to evolve.
Read MoreTU Munich develops cuboidal conformable tanks using carbon fiber composites for increased hydrogen storage
Flat tank enabling standard platform for BEV and FCEV uses thermoplastic and thermoset composites, overwrapped skeleton design in pursuit of 25% more H2 storage.
Read MoreComposites end markets: Electronics (2024)
Increasingly, prototype and production-ready smart devices featuring thermoplastic composite cases and other components provide lightweight, optimized sustainable alternatives to metal.
Read MoreCombining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures
The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.
Read MoreRead Next
All-recycled, needle-punched nonwoven CFRP slashes carbon footprint of Formula 2 seat
Dallara and Tenowo collaborate to produce a race-ready Formula 2 seat using recycled carbon fiber, reducing CO2 emissions by 97.5% compared to virgin materials.
Read MoreDeveloping bonded composite repair for ships, offshore units
Bureau Veritas and industry partners issue guidelines and pave the way for certification via StrengthBond Offshore project.
Read MorePlant tour: Daher Shap’in TechCenter and composites production plant, Saint-Aignan-de-Grandlieu, France
Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.
Read More