Release agents and process chemical specialties
Published

AMRC installing UK's largest radial braider

The new radial triaxial braider will support the development of complex lightweight preforms for automotive, aerospace and other weight sensitive industries.

Share

radial braider

Source | AMRC

The largest radial triaxial braider in the UK is currently being installed at the University of Sheffield Advanced Manufacturing Research Centre (AMRC, Sheffield, UK) to support the development of complex lightweight preforms for automotive, aerospace and other weight sensitive industries.

The equipment, which is supplied by Herzog GMBH (Oldenburg, Germany), is part of a collection of state-of-the-art equipment purchased by the AMRC with funding from the Aerospace Technology Institute (ATI, Bedford, UK). 

The giant 6m diameter braiding system paves the way for the development of manufacturing complex architectures and features with dry fiber technology, offering the ability to tailor orientations to suit structural requirements as well as allowing both off axis and axial fibers to be laid simultaneously at the deposition rates required for high volume manufacture.

A wide range of materials can be used with the radial braider including carbon, thermoplastic, glass, aramid and co-mingled tows. The Braider is also capable of processing ceramic fiber such as alumina and silicon carbide which would otherwise be difficult to process on a conventional braiding machine.

It has widespread application for components used in aerospace and automotive, helping with the production of fuel pipes and wing spars and numerous car body structure parts. It will also be available to support Dowty Propeller’s (Staverton, UK) multimillion pound Digital Propulsion project to develop future turboprop solutions.

Chris McHugh, Dry Fiber Development Manager at the AMRC Composite Centre, explains, 

“The radial element is a primary feature of the braider as it means less fiber damage and more complex geometry is achievable due to the fact the fibers come down in a flat disc rather than a long cone. The machine is also six-axis with two robots. Quite often one robot is attached to a braider but the AMRC are putting two heavy duty robots either side of the braiding ring. The two 6-axis robots working in tandem means heavy parts and mandrels can be processed and not just foam cores. It is also able to handle more delicate or less stiff cores, due to the additional support.”

The technology, which is open to research projects for AMRC members, external companies and grant funded projects, can be combined with any of the other technologies at the AMRC, including the 1000T Rhodes press and KraussMaffei (München, Germany) RTM equipment.

Consultant engineer at the AMRC Composite Centre, Andy Smith, says,

“The advantage is it can be combined with other dry fiber technology as AMRC have the full process chain to generate parts to demonstrate industrial scale, high volume production. The AMRC was considering one of these braiding machines over ten years ago when the Composite Centre was starting out, it is technology they have wanted for a long time but it didn’t suit the market at that time, which was focused more on prepeg rather than dry fiber. With the setup of this machine, the braider has the potential to process delicate ceramic fibers for metal or ceramic matrix composites which have higher temperature capabilities and higher stiffness - making them suitable for military applications.”

The braider’s arrival follows the delivery of a 3D weaving loom and Jacquard currently under construction at the Composite Centre. Other cutting edge equipment includes through-thickness permeability testing, tailored fiber placement, a high temperature-high tension filament winder, tow-spreading machine and robotic end effectors for automated handling.

It will be used not only to manufacture preforms but also to develop the enabling technology for commercialization including joining, automation and impregnation.

The AMRC Composite Centre is on the lookout for companies to work with on collaborative research and development projects using the braiding system. Contact Chris McHugh by emailing c.mchugh@amrc.co.uk.

Wabash
Register now for the ITHEC 2024 conference!
Wickert Hydraulic Presses
CAMX 2024
CompositesWorld
Carbon Fiber 2024
Airtech
Advert for lightweight carrier veils used in aero
CompositesWorld
Composites product design
HEATCON Composite Systems
MITO® Material Solutions

Related Content

ATL/AFP

Trelleborg launches low-friction thermoplastic composite bearing

The HiMod Advanced Composite Bearing Plus is a dual-layer bearing with a low-friction PEEK liner that doubles as an impermeable sealing surface, in addition to 50% less sliding friction, increased wear performance.  

Read More
Sustainability

Novel composite technology replaces welded joints in tubular structures

The Tree Composites TC-joint replaces traditional welding in jacket foundations for offshore wind turbine generator applications, advancing the world’s quest for fast, sustainable energy deployment.  

Read More
Market Outlook

Materials & Processes: Tooling for composites

Composite parts are formed in molds, also known as tools. Tools can be made from virtually any material. The material type, shape and complexity depend upon the part and length of production run. Here's a short summary of the issues involved in electing and making tools.

Read More
Wind/Energy

Materials & Processes: Fibers for composites

The structural properties of composite materials are derived primarily from the fiber reinforcement. Fiber types, their manufacture, their uses and the end-market applications in which they find most use are described.

Read More

Read Next

Plant Tours

Plant tour: Teijin Carbon America Inc., Greenwood, S.C., U.S.

In 2018, Teijin broke ground on a facility that is reportedly the largest capacity carbon fiber line currently in existence. The line has been fully functional for nearly two years and has plenty of room for expansion.

Read More
Defense

“Structured air” TPS safeguards composite structures

Powered by an 85% air/15% pure polyimide aerogel, Blueshift’s novel material system protects structures during transient thermal events from -200°C to beyond 2400°C for rockets, battery boxes and more.

Read More
Additive Manufacturing

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More
Release agents and process chemical specialties