Published

Formable, reusable tooling achieves complex composite parts

CAMX 2024: Hawthorn Composites is displaying an inner and outer tail boom and a multi-chamber composite trailing edge control surface, enabled via its Smart Tooling solution.

Share

PAL-V layup. Source (All Images) | Hawthorn Composites and Smart Tooling 

Hawthorn Composites and Smart Tooling (Miamisburg, Ohio, U.S.) is exhibiting multiple displays — including a sub-scale trailing edge and tail booms — that demonstrate its ability to produce high-quality, complex composite parts with Smart Tooling.

The first display includes the inner and outer tail boom for the PAL-V Liberty flying car, made by Hawthorn Composites. The tail booms are complex geometry composite parts with trapped features and some high-tolerance requirements, developed using carbon fiber prepreg laid up on Smart Tools using laser guidance. Once layup was completed, the Smart Tools were placed into cure molds and cured in a conventional oven; Hawthorn says they act like bladders during cure and were pressurized to drive out air and compact the laminate during the cure cycle.

The second display is a sub-scale, multi-chamber composite trailing edge control surface that was a proof of concept (POC) project for Pilatus Aircraft Ltd. (Stans, Switzerland). Results led to Pilatus adopting a similar method of manufacture for making the control surfaces for its PC-24 business jet.

Pilatus trailing edge. 

The small trailing edge chamber of the control surface has an acute, knife edge angle that would traditionally be made using a fabricated foam core. For this POC control surface, however, the trailing edge chamber and the adjoining chamber were made using Smart Tools. The fabrication included laying up carbon fiber prepreg into a floating lid cure mold, laying up prepreg onto the Smart Tools and placing them into the cure mold. Once completed, cure was performed via autoclave.

The Smart Tooling technology enables a rigid, reusable, elastic and reformable mandrel that can ease the burden of layup, while still enabling simplicity of extraction from the cured, trapped or complex geometry composite part.

Hawthorn Composites & Smart Tooling will be exhibiting new technology at CAMX 2024 in San Diego, CA this September.
Plan to meet up with their team or get registered here!

SEPT. 9 - 12

2024

SAN DIEGO CONVENTION CENTER

San Diego, CA

theCAMX.org

September 9 - 12, 2024

San Diego Convention Center in San Diego, CA

Presented By theCAMX.org

Related Content

Related Content

Feature

Natural fiber composites: Growing to fit sustainability needs

Led by global and industry-wide sustainability goals, commercial interest in flax and hemp fiber-reinforced composites grows into higher-performance, higher-volume applications.

Read More
Natural Fibers

Sulapac introduces Sulapac Flow 1.7 to replace PLA, ABS and PP in FDM, FGF

Available as filament and granules for extrusion, new wood composite matches properties yet is compostable, eliminates microplastics and reduces carbon footprint.

Read More

PEEK vs. PEKK vs. PAEK and continuous compression molding

Suppliers of thermoplastics and carbon fiber chime in regarding PEEK vs. PEKK, and now PAEK, as well as in-situ consolidation — the supply chain for thermoplastic tape composites continues to evolve.

Read More
Carbon Fibers

Price, performance, protection: EV battery enclosures, Part 1

Composite technologies are growing in use as suppliers continue efforts to meet more demanding requirements for EV battery enclosures.  

Read More

Read Next

Defense

Building a better tail boom

Out-of-autoclave carbon fiber/thermoplastic demonstrator is a 30 percent lighter drop-in replacement for an existing aluminum design.

Read More
Feature

RTM, dry braided fabric enable faster, cost-effective manufacture for hydrokinetic turbine components

Switching from prepreg to RTM led to significant time and cost savings for the manufacture of fiberglass struts and complex carbon fiber composite foils that power ORPC’s RivGen systems.

Read More
ATL/AFP

Combining multifunctional thermoplastic composites, additive manufacturing for next-gen airframe structures

The DOMMINIO project combines AFP with 3D printed gyroid cores, embedded SHM sensors and smart materials for induction-driven disassembly of parts at end of life.

Read More